On the maximal unramified pro-2-extension of certain cyclotomic Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-extensions

被引:0
作者
Abdelmalek Azizi
Mohammed Rezzougui
Abdelkader Zekhnini
机构
[1] Mohammed First University,Mathematics Department, Sciences Faculty
[2] Mohammed First University,Department of Mathematics and Informatics, Pluridisciplinary faculty
关键词
Iwasawa theory; -extension; 2-Class field tower; Real quadratic field; 2-Class group; Metacyclic and non-metacyclic 2-group; Primary 11R23; 20D15; Secondary 11R11; 11R20; 11R29; 11R32; 11R37;
D O I
10.1007/s10998-020-00362-x
中图分类号
学科分类号
摘要
In this paper, we establish a necessary and sufficient criterion for a finite metabelian 2-group G whose abelianized Gab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{ab}$$\end{document} is of type (2,2m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2, 2^m)$$\end{document}, with m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, to be metacyclic. This criterion is based on the rank of the maximal subgroup of G which contains the three normal subgroups of G of index 4. Then, we apply this result to study the structure of the Galois group of the maximal unramified pro-2-extension of the cyclotomic Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-extension of certain number fields. Illustration is given by some real quadratic fields.
引用
收藏
页码:54 / 66
页数:12
相关论文
共 19 条
[1]  
Azizi et A(2001)Sur le rang du 2-groupe de classes de Trans. Am. Math. Soc. 7 2741-2752
[2]  
Mouhib A(2005) oú m = 2 ou un premier p = 1 mod 4 Pac. J. Math. 218 17-36
[3]  
Azizi A(2019)Capitulation des 2- classes d’idéaux de certains corps biquadratiques dont le corps de genres diffère du 2-corps de classes de Hilbert Int. J. Number Theory. 15 807-824
[4]  
Mouhib A(2018)On the Hilbert 2-class field of some quadratic number fields Quart. J. Math 69 1163-1193
[5]  
Azizi A(1958)On the rank of 2- class group of the Hilbert 2-class field of some quadratic fields Proc. Camb. Philos. Math. Soc. 54 327-337
[6]  
Rezzougui M(1994)On prime-power groups with two generators Proc. Japan Acad. Ser. A 70 264-266
[7]  
Taous M(1973)Remarks on Ann. Inst. Fourier Grenoble 23 fasc. 3-284
[8]  
Zekhnini A(1976)- extension of number fields Am. J. Math. 98 263-143
[9]  
Benjamin E(1930)Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré premier l J. Reine Angew. Math. 162 134-346
[10]  
Snyder C(1989)On the Iwasawa invariants of totally real number fields Expos. Math. 7 289-107