Conformal Rigidity and Non-rigidity of the Scalar Curvature on Riemannian Manifolds

被引:0
作者
Jaeyoung Byeon
Sangdon Jin
机构
[1] KAIST,Department of Mathematical Sciences
[2] KAIST,Stochastic Analysis and Application Research Center
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Conformal; Rigidity; Non-rigidity scalar curvature; Linearized operator; Riemannian manifold; 53C24; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
For a compact smooth manifold (M,g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g_0)$$\end{document} with a boundary, we study the conformal rigidity and non-rigidity of the scalar curvature in the conformal class. It is known that the sign of the first eigenvalue for a linearized operator of the scalar curvature by a conformal change determines the rigidity/non-rigidity of the scalar curvature by conformal changes when the scalar curvature Rg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{g_0}$$\end{document} is positive. In this paper, we show the sign condition of Rg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{g_0}$$\end{document} is not necessary, and a reversed rigidity of the scalar curvature in the conformal class does not hold if there exists a point x0∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 \in M$$\end{document} with Rg0(x0)>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{g_0}(x_0) > 0.$$\end{document}
引用
收藏
页码:9745 / 9767
页数:22
相关论文
共 29 条
[11]  
Gray A(2016)On scalar curvature rigidity of vacuum static spaces Math. Ann. 365 1257-1277
[12]  
Vanhecke L(1975)Potential and scattering theory on wildly perturbed domains J. Funct. Anal. 18 27-59
[13]  
Hang F(1979)On the proof of the positive mass conjecture in general relativity Commun. Math. Phys. 65 45-76
[14]  
Wang X(2002)Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature J. Differ. Geom. 62 79-125
[15]  
Hang F(1981)A new proof of the positive energy theorem Commun. Math. Phys. 80 381-402
[16]  
Wang X(2017)Brown-York mass and compactly supported conformal deformations of scalar curvature J. Geom. Anal. 27 797-816
[17]  
Lohkamp J(undefined)undefined undefined undefined undefined-undefined
[18]  
Min-Oo M(undefined)undefined undefined undefined undefined-undefined
[19]  
Obata M(undefined)undefined undefined undefined undefined-undefined
[20]  
Qing J(undefined)undefined undefined undefined undefined-undefined