Local Currents in Metric Spaces

被引:0
作者
Urs Lang
机构
[1] ETH Zurich,Department of Mathematics
来源
Journal of Geometric Analysis | 2011年 / 21卷
关键词
Metric spaces; Normal currents; Flat chains; Integral currents; 49Q15; 58A25;
D O I
暂无
中图分类号
学科分类号
摘要
Ambrosio and Kirchheim presented a theory of currents with finite mass in complete metric spaces. We develop a variant of the theory that does not rely on a finite mass condition, closely paralleling the classical Federer–Fleming theory. If the underlying metric space is an open subset of a Euclidean space, we obtain a natural chain monomorphism from general metric currents to general classical currents whose image contains the locally flat chains and which restricts to an isomorphism for locally normal currents. We give a detailed exposition of the slicing theory for locally normal currents with respect to locally Lipschitz maps, including the rectifiable slices theorem, and of the compactness theorem for locally integral currents in locally compact metric spaces, assuming only standard results from analysis and measure theory.
引用
收藏
页码:683 / 742
页数:59
相关论文
共 30 条
[11]  
Fleming W.H.(2002)A new proof of the rectifiable slices theorem Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 905-924
[12]  
Hardt R.(2002)Functions of bounded higher variation Indiana Univ. Math. J. 51 645-677
[13]  
Rivière T.(2004)A differentiable structure for metric measure spaces Adv. Math. 183 271-315
[14]  
Heinonen J.(1994)Rectifiable metric spaces: local structure and regularity of the Hausdorff measure Proc. Am. Math. Soc. 121 113-123
[15]  
Jerrard R.L.(2005)Fractures and vector valued maps Calc. Var. Partial Differ. Equ. 22 391-420
[16]  
Jerrard R.L.(2004)A product-estimate for Ginzburg–Landau and corollaries J. Funct. Anal. 211 219-244
[17]  
Soner H.M.(2000)Lipschitz algebras and derivations. II. Exterior differentiation J. Funct. Anal. 178 64-112
[18]  
Keith S.(2005)Isoperimetric inequalities of Euclidean type in metric spaces Geom. Funct. Anal. 15 534-554
[19]  
Kirchheim B.(2006)Filling invariants at infinity and the Euclidean rank of Hadamard spaces Int. Math. Res. Not. Art. ID 83090 33-160
[20]  
Mucci D.(2007)Flat convergence for integral currents in metric spaces Calc. Var. Partial Differ. Equ. 28 139-255