Bifurcation of nodal solutions for the Moore–Nehari differential equation

被引:0
作者
Ryuji Kajikiya
机构
[1] Osaka Electro-Communication University,Center for Physics and Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2023年 / 30卷
关键词
Bifurcation; Symmetric solution; Nodal solution; 34B08; 34C23; 34L30.;
D O I
暂无
中图分类号
学科分类号
摘要
We study the bifurcation of nodal solutions for the Moore–Nehari differential equation u′′+h(x,λ)|u|p-1u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u'' + h(x,\lambda )|u|^{p-1}u = 0$$\end{document} in (-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1,1)$$\end{document} with u(-1)=u(1)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(-1)=u(1)=0$$\end{document}, where p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, h(x,λ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(x,\lambda )=0$$\end{document} for |x|<λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x|<\lambda $$\end{document} and h(x,λ)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(x,\lambda )=1$$\end{document} for λ≤|x|≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \le |x| \le 1$$\end{document} and λ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in (0,1)$$\end{document} is a bifurcation parameter. For a non-negative integer n, we call a solution n-nodal if it has exactly n zeros in (-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1,1)$$\end{document}. We call a solution symmetric if it is even or odd. We prove that the equation has a unique n-nodal symmetric solution (λ,un(x,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,u_n(x,\lambda ))$$\end{document}, which is a continuous curve of λ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in (0,1)$$\end{document} in C1[-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1[-1,1]$$\end{document}. We show that when n is odd, this curve does not bifurcate and when n is even, the curve bifurcates and an n-nodal asymmetric solution emanates.
引用
收藏
相关论文
共 17 条
[1]  
Drábek P(1999)On the closed solution to some nonhomogeneous eigenvalue problems with Differential Integral Equations 12 773-788
[2]  
Manásevich R(2015)-Laplacian Tatra Mt. Math. Publ. 63 115-127
[3]  
Gritsans A(2021)Extension of the example by Moore–Nehari Discrete Contin. Dyn. Syst. 41 1483-1506
[4]  
Sadyrbaev F(2022)Existence of nodal solutions for the sublinear Moore–Nehari differential equation J. Math. Soc. Japan 74 655-680
[5]  
Kajikiya R(2018)Symmetric and asymmetric nodal solutions for the Moore–Nehari differential equation Nonlinear Differ. Equ. Appl. 25 1-22
[6]  
Kajikiya R(1959)Symmetry-breaking bifurcation for the Moore–Nehari differential equation Trans. Am. Math. Soc. 93 30-52
[7]  
Kajikiya R(1973)Nonoscillation theorems for a class of nonlinear differential equations Rocky Mt. J. Math. 3 161-202
[8]  
Sim I(2019)Some aspects of nonlinear eigenvalue problems Commun. Contemp. Math. 21 1750097-35
[9]  
Tanaka S(2012)Symmetry-breaking bifurcation for the one-dimensional Hénon equation J. Math. Anal. Appl. 385 24-2692
[10]  
Moore RA(2014)Generalized Jacobian elliptic functions and their application to bifurcation problems associated with Commun. Pure Appl. Anal. 13 2675-1014