A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice

被引:534
作者
Lohse, M. [1 ,2 ]
Schweizer, C. [1 ,2 ]
Zilberberg, O. [3 ]
Aidelsburger, M. [1 ,2 ]
Bloch, I. [1 ,2 ]
机构
[1] Univ Munich, Fak Phys, Schellingstr 4, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
ENERGY-SPECTRUM; EDGE STATES; ELECTRON; PHASE; TRANSPORT;
D O I
10.1038/NPHYS3584
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological charge pumping enables the transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transported charge is quantized and purely determined by the topology of the pump cycle, making it robust to perturbations. Here, we report on the realization of such a pump with ultracold bosonic atoms forming a Mott insulator in a dynamically controlled optical superlattice. By taking in situ images of the cloud, we observe a quantized deflection per pump cycle. We reveal the pump's genuine quantum nature by showing that, in contrast to groundstate particles, a counterintuitive reversed deflection occurs for particles in the first excited band. Furthermore, we directly demonstrate that the system undergoes a controlled topological transition in higher bands when tuning the superlattice parameters. These results open a route to the implementation of more complex pumping schemes, including spin degrees of freedom and higher dimensions.
引用
收藏
页码:350 / U188
页数:6
相关论文
共 49 条
[1]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[2]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[3]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/nphys2790, 10.1038/NPHYS2790]
[4]  
AZBEL MY, 1964, SOV PHYS JETP-USSR, V19, P634
[5]   Gigahertz quantized charge pumping [J].
Blumenthal, M. D. ;
Kaestner, B. ;
Li, L. ;
Giblin, S. ;
Janssen, T. J. B. M. ;
Pepper, M. ;
Anderson, D. ;
Jones, G. ;
Ritchie, D. A. .
NATURE PHYSICS, 2007, 3 (05) :343-347
[6]   Scattering approach to parametric pumping [J].
Brouwer, PW .
PHYSICAL REVIEW B, 1998, 58 (16) :10135-10138
[7]   An Aharonov-Bohm interferometer for determining Bloch band topology [J].
Duca, L. ;
Li, T. ;
Reitter, M. ;
Bloch, I. ;
Schleier-Smith, M. ;
Schneider, U. .
SCIENCE, 2015, 347 (6219) :288-292
[8]   Time reversal polarization and a Z2 adiabatic spin pump [J].
Fu, Liang ;
Kane, C. L. .
PHYSICAL REVIEW B, 2006, 74 (19)
[9]   THE GENERAL MOTION OF CONDUCTION ELECTRONS IN A UNIFORM MAGNETIC FIELD, WITH APPLICATION TO THE DIAMAGNETISM OF METALS [J].
HARPER, PG .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1955, 68 (10) :879-892
[10]   ENERGY-SPECTRUM AND THE QUANTUM HALL-EFFECT ON THE SQUARE LATTICE WITH NEXT-NEAREST-NEIGHBOR HOPPING [J].
HATSUGAI, Y ;
KOHMOTO, M .
PHYSICAL REVIEW B, 1990, 42 (13) :8282-8294