Inequalities between lattice packing and covering densities of centrally symmetric plane convex bodies

被引:0
作者
D. Ismailescu
机构
[1] New York University,Courant Institute of Mathematical Sciences
来源
Discrete & Computational Geometry | 2001年 / 25卷
关键词
Convex Body; Plane Lattice; Affine Transformation; Lattice Packing; Lattice Arrangement;
D O I
暂无
中图分类号
学科分类号
摘要
Given a family C of plane convex bodies, let Ω, (C) be the set of all pairs (x, y) with the property that there exists K ∈ C such that ϑ(K) = x and δ(K) = y, where ϑ(K) and δ(K) denote the densities of the thinnest covering and the densest packing of the plane with copies of K, respectively. The set Ω(C) is defined analogously, with the difference that we restrict our attention to lattice packings and coverings.
引用
收藏
页码:365 / 388
页数:23
相关论文
共 12 条
[1]  
Dowker C. H.(1944)On minimum circumscribed polygons Bull. Amer. Math. Soc. 50 120-122
[2]  
Ennola V.(1961)On the lattice constant of a symmetric convex domain J. London Math. Soc. 36 135-138
[3]  
Fejes-Tóth L.(1950)Some packing and covering theorems Acta Sci. Math. (Szeged) 12/A 62-67
[4]  
Groemer H.(1963)Existenzsätze für Lagerungen im Euklidischen Raum Math. Z. 81 260-278
[5]  
Kuperberg W.(1987)An inequality linking packing and covering densities of plane convex bodies Geom. Dedicata 23 59-66
[6]  
Ledermann W.(1949)On lattice points in a convex decagon Acta Math. 81 319-351
[7]  
Mahler K.(1947)On the minimum determinant and the circumscribed hexagons of a convex domain Nederl. Akad. Wetensch. Proc. 50 692-703
[8]  
Mahler K.(1934)Über die dichteste gitterförmige Lagerung kongruente Bereiche in der Ebene und eine besondere Art konvexer Kurven Abh. Mathematischen Seminar, Hamburg, Hansischer Universität 10 216-230
[9]  
Reinhardt K.(1939)Über eine Extremumeigenschaft der Ellipsen Compositio Math. 6 468-470
[10]  
Sas E.(1961)Zur Lagerung kongruenter Körper im Raum Monatsh. Math. 65 154-158