Explicit hybrid time domain solver for the Maxwell equations in 3D

被引:10
|
作者
Edelvik F. [1 ]
Ledfelt G. [2 ]
机构
[1] Department of Scientific Computing, Uppsala University, Box 120
[2] Department of Numerical Analysis and Computing Science, Royal Institute of Technology
关键词
FD-TD; Finite volumes; Hybrid solver; Maxwell's equations;
D O I
10.1023/A:1007625629485
中图分类号
学科分类号
摘要
We present an accurate and efficient explicit hybrid solver for Maxwell's equations in time domain. The hybrid solver combines FD-TD with an unstructured finite volume solver. The finite volume solver is a generalization of FD-TD to unstructured grids and it uses a third-order staggered Adams-Bashforth scheme for time discretization. A spatial filter of Laplace type is used by the finite volume solver to enable long simulations without suffering from late time instability problems. The numerical examples demonstrate that the hybrid solver is superior to stand-alone FD-TD in terms of accuracy and efficiency.
引用
收藏
页码:61 / 78
页数:17
相关论文
共 50 条
  • [41] Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries
    Ciarlet, Patrick, Jr.
    Jamelot, Erell
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 1122 - 1135
  • [42] Multirate Technique for Explicit Discontinuous Galerkin Computations of Time-Domain Maxwell Equations on Complex Geometries
    Kameni, A.
    Seny, B.
    Pichon, L.
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [43] A MULTISCALE APPROACH AND A HYBRID FE-FDTD ALGORITHM FOR 3D TIME-DEPENDENT MAXWELL'S EQUATIONS IN COMPOSITE MATERIALS
    Cao, Liqun
    Li, Keqi
    Luo, Jianlan
    Wong, Yaushu
    MULTISCALE MODELING & SIMULATION, 2015, 13 (04): : 1446 - 1477
  • [44] A Parallel Multigrid Solver for Time-Periodic Incompressible Navier-Stokes Equations in 3D
    Benedusi, Pietro
    Hupp, Daniel
    Arbenz, Peter
    Krause, Rolf
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 265 - 273
  • [45] Geometric Formulation of Maxwell s Equations in the Frequency Domain for 3D Wave Propagation Problems in Unbounded Regions
    Bettini, P.
    Midrio, M.
    Specogna, R.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 66 (02): : 117 - 134
  • [46] Hybrid finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems
    Zaslavsky, M.
    Druskin, V.
    Davydycheva, S.
    Knizhnerman, L.
    Abubakar, A.
    Habashy, T.
    GEOPHYSICS, 2011, 76 (02) : F123 - F137
  • [47] A new second order 3D edge element on tetrahedra for time dependent Maxwell's equations
    Joly, P
    Poirier, C
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 842 - 847
  • [48] A mortar spectral element method for 3D Maxwell's equations
    Boulmezaoud, TZ
    El Rhabi, M
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (03) : 577 - 610
  • [49] Continuous Galerkin methods for solving Maxwell equations in 3D geometries
    Ciarlet, Patrick, Jr.
    Jamelot, Erell
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 547 - +
  • [50] TIME-DOMAIN WAVE SPLITTING OF MAXWELL EQUATIONS
    WESTON, VH
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (04) : 1370 - 1392