Explicit hybrid time domain solver for the Maxwell equations in 3D

被引:10
|
作者
Edelvik F. [1 ]
Ledfelt G. [2 ]
机构
[1] Department of Scientific Computing, Uppsala University, Box 120
[2] Department of Numerical Analysis and Computing Science, Royal Institute of Technology
关键词
FD-TD; Finite volumes; Hybrid solver; Maxwell's equations;
D O I
10.1023/A:1007625629485
中图分类号
学科分类号
摘要
We present an accurate and efficient explicit hybrid solver for Maxwell's equations in time domain. The hybrid solver combines FD-TD with an unstructured finite volume solver. The finite volume solver is a generalization of FD-TD to unstructured grids and it uses a third-order staggered Adams-Bashforth scheme for time discretization. A spatial filter of Laplace type is used by the finite volume solver to enable long simulations without suffering from late time instability problems. The numerical examples demonstrate that the hybrid solver is superior to stand-alone FD-TD in terms of accuracy and efficiency.
引用
收藏
页码:61 / 78
页数:17
相关论文
共 50 条
  • [21] A Method-of-Lines Time Domain Method Solver for Dispersive Bianisotropic Maxwell's Equations
    Banks, Jeffrey W.
    Henshaw, William D.
    Kildishev, Alexander, V
    Kovacic, Gregor
    Prokopeva, Ludmila J.
    Olson, Derek
    2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2019,
  • [22] An unstructured grid-based parallel solver for time-domain Maxwell's equations
    Shankar, V
    Rowell, C
    Hall, WF
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 98 - 101
  • [23] An Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell Equations
    Ahmed Ratnani
    Eric Sonnendrücker
    Journal of Scientific Computing, 2012, 51 : 87 - 106
  • [24] Explicit and implicit parallel upwind monotone residual distribution solver for the time dependent ideal 3D magnetohydrodynamic equations on unstructured grids
    Csik, A
    De Sterck, H
    Ricchiuto, M
    Poedts, S
    Deconinck, H
    Roose, D
    COMPUTATIONAL MECHANICS: TECHNIQUES AND DEVELOPMENTS, 2000, : 311 - 323
  • [25] Full Wave Maxwell's Equations Solver EMWSolver3D
    Smirnov, A. P.
    Semenov, A. N.
    PIERS 2012 MOSCOW: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2012, : 252 - 255
  • [26] The mortar method for the Maxwell's equations in 3D
    Ben Belgacem, F
    Buffa, A
    Maday, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (10): : 903 - 908
  • [27] Solving Maxwell equations in 3D prismatic domains
    Ciarlet, P
    Garcia, E
    Zou, J
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) : 721 - 726
  • [28] A meshless time-domain algorithm for solving the 3-D Maxwell's equations
    Gao, Yukun
    Chen, Hongquan
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2015, 30 (02): : 257 - 263
  • [29] Some unconditionally stable time stepping methods for the 3D Maxwell's equations
    Lee, J
    Fornberg, B
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (02) : 497 - 523
  • [30] Parallel and explicit finite-element time-domain method for Maxwell's equations
    Kim, Joonshik
    Teixeira, Fernando L.
    IEEE Transactions on Antennas and Propagation, 2011, 59 (6 PART 2) : 2350 - 2356