Explicit hybrid time domain solver for the Maxwell equations in 3D

被引:10
作者
Edelvik F. [1 ]
Ledfelt G. [2 ]
机构
[1] Department of Scientific Computing, Uppsala University, Box 120
[2] Department of Numerical Analysis and Computing Science, Royal Institute of Technology
关键词
FD-TD; Finite volumes; Hybrid solver; Maxwell's equations;
D O I
10.1023/A:1007625629485
中图分类号
学科分类号
摘要
We present an accurate and efficient explicit hybrid solver for Maxwell's equations in time domain. The hybrid solver combines FD-TD with an unstructured finite volume solver. The finite volume solver is a generalization of FD-TD to unstructured grids and it uses a third-order staggered Adams-Bashforth scheme for time discretization. A spatial filter of Laplace type is used by the finite volume solver to enable long simulations without suffering from late time instability problems. The numerical examples demonstrate that the hybrid solver is superior to stand-alone FD-TD in terms of accuracy and efficiency.
引用
收藏
页码:61 / 78
页数:17
相关论文
共 15 条
  • [1] Abenius E., Andersson U., Edelvik F., Eriksson L., Ledfelt G., Hybrid Time Domain Solvers for the Maxwell Equations in 2D, (2000)
  • [2] Andersson U., Time Domain Methods for the Maxwell Equations, (2001)
  • [3] Dey S., Mittra R., A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects, IEEE Microwave Guided Ware Lett., 7, 9, pp. 273-275, (1997)
  • [4] Edelvik F., Analysis of a finite volume solver for Maxwell's equations, Finite Volumes for Complex Applications II, pp. 141-148, (1999)
  • [5] Gedney S.D., An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media, Electromagnetics, 16, 4, pp. 399-415, (1996)
  • [6] Ghrist M., Driscoll T.A., Fornberg B., Staggered time integrators for the wave equation, SIAM J. Num. Anal., (2000)
  • [7] Lee J.-F., Lee R., Cangellaris A., Time-domain finite-element methods, IEEE Trans. Antennas Propagat., 45, 3, pp. 430-442, (1997)
  • [8] Martin T., An improved near- to far-zone transformation for the finite-difference time-domain method, IEEE Trans. Antennas Propagat., 46, 9, pp. 1263-1271, (1998)
  • [9] Okoniewski M., Okoniewska E., Stuchly M.A., Three-dimensional subgridding algorithm for FDTD, IEEE Trans. Antennas Propagat., 45, 3, pp. 422-429, (1997)
  • [10] Riley D.J., Turner C.D., VOLMAX: A solid-model-based, transient volumetric Maxwell solver using hybrid grids, IEEE Antennas Propagat. Mag., 39, 1, pp. 20-33, (1997)