共 46 条
[1]
Corus D(2018)Level-based analysis of genetic algorithms and other search processes IEEE Trans. Evolut. Comput. 22 707-719
[2]
Dang DC(2018)Standard steady state genetic algorithms can hillclimb faster than mutation-only evolutionary algorithms IEEE Trans. Evolut. Comput. 22 720-732
[3]
Eremeev AV(2018)Escaping local optima using crossover with emergent diversity IEEE Trans. Evolut. Comput. 22 484-497
[4]
Lehre PK(2012)Crossover can provably be useful in evolutionary computation Theor. Comput. Sci. 425 17-33
[5]
Corus D(2009)Analysis of diversity-preserving mechanisms for global exploration Evolut. Comput. 17 455-476
[6]
Oliveto PS(2003)Towards an analytic framework for analysing the computation time of evolutionary algorithms Artif. Intell. 145 59-97
[7]
Dang DC(2004)A study of drift analysis for estimating computation time of evolutionary algorithms Nat. Comput. 3 21-35
[8]
Friedrich T(2002)The analysis of evolutionary algorithms-a proof that crossover really can help Algorithmica 34 47-66
[9]
Kötzing T(2012)Black-box search by unbiased variation Algorithmica 64 623-642
[10]
Krejca MS(2011)Crossover can be constructive when computing unique input-output sequences Soft Comput. 15 1675-1687