Special symplectic Lie groups and hypersymplectic Lie groups

被引:0
|
作者
Xiang Ni
Chengming Bai
机构
[1] Nankai University,Chern Institute of Mathematics & LPMC
来源
manuscripta mathematica | 2010年 / 133卷
关键词
17B05; 17D25; 22E20;
D O I
暂无
中图分类号
学科分类号
摘要
A special symplectic Lie group is a triple \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(G,\omega,\nabla)}$$\end{document} such that G is a finite-dimensional real Lie group and ω is a left invariant symplectic form on G which is parallel with respect to a left invariant affine structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nabla}$$\end{document} . In this paper starting from a special symplectic Lie group we show how to “deform” the standard Lie group structure on the (co)tangent bundle through the left invariant affine structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nabla}$$\end{document} such that the resulting Lie group admits families of left invariant hypersymplectic structures and thus becomes a hypersymplectic Lie group. We consider the affine cotangent extension problem and then introduce notions of post-affine structure and post-left-symmetric algebra which is the underlying algebraic structure of a special symplectic Lie algebra. Furthermore, we give a kind of double extensions of special symplectic Lie groups in terms of post-left-symmetric algebras.
引用
收藏
页码:373 / 408
页数:35
相关论文
共 50 条
  • [1] Special symplectic Lie groups and hypersymplectic Lie groups
    Ni, Xiang
    Bai, Chengming
    MANUSCRIPTA MATHEMATICA, 2010, 133 (3-4) : 373 - 408
  • [2] Lattices in symplectic Lie groups
    Medina, Alberto
    Revoy, Philippe
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 27 - 39
  • [3] Flat Affine Symplectic Lie Groups
    Valencia, Fabricio
    JOURNAL OF LIE THEORY, 2021, 31 (01) : 63 - 92
  • [4] SYMPLECTIC LIE GROUPS AND DOUBLED GEOMETRY
    Pham, D. N.
    Ye, F.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (02): : 161 - 190
  • [5] Symplectic or contact structures on Lie groups
    Khakimdjanov, Y
    Goze, M
    Medina, A
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 21 (01) : 41 - 54
  • [6] Variational Symplectic Accelerated Optimization on Lie Groups
    Lee, Taeyoung
    Tao, Molei
    Leok, Melvin
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 233 - 240
  • [7] STRUCTURE OF SYMPLECTIC LIE GROUPS AND MOMENTUM MAP
    Medina, Alberto
    TOHOKU MATHEMATICAL JOURNAL, 2015, 67 (03) : 419 - 431
  • [8] Special Hermitian metrics and Lie groups
    Enrietti, Nicola
    Fino, Anna
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S211 - S219
  • [9] SYMPLECTIC STRUCTURES ASSOCIATED TO LIE-POISSON GROUPS
    ALEKSEEV, AY
    MALKIN, AZ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 162 (01) : 147 - 173
  • [10] Orthogonal and symplectic representations of semi simple lie groups
    Matcev, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1943, 41 : 318 - 321