共 50 条
Melatonin attenuates renal sympathetic overactivity and reactive oxygen species in the brain in neurogenic hypertension
被引:0
|作者:
Erika E. Nishi
Vitor R. Almeida
Fernanda G. Amaral
Karin A. Simon
Henrique A. Futuro-Neto
Roberto B. Pontes
Juliana G. Cespedes
Ruy R. Campos
Cássia T. Bergamaschi
机构:
[1] Universidade Federal de São Paulo,Department of Physiology, Campus São Paulo, Escola Paulista de Medicina
[2] Universidade Federal de São Paulo,Department of Biological Sciences, Campus Diadema
[3] Universidade Federal do Espírito Santo,Department of Morphology
[4] Universidade Federal de São Paulo,Institute of Science and Technology, Campus São José dos Campos
来源:
关键词:
Renovascular hypertension;
Sympathetic nervous system;
Oxidative stress;
Baroreflex sensitivity;
Rostral Ventrolateral medulla;
Melatonin;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Sympathetic overactivation contributes to the pathogenesis of both experimental and human hypertension. We have previously reported that oxidative stress in sympathetic premotor neurons leads to arterial baroreflex dysfunction and increased sympathetic drive to the kidneys in an experimental model of neurogenic hypertension. In this study, we hypothesized that melatonin, a potent antioxidant, may be protective in the brainstem regions involved in the tonic and reflex control of blood pressure (BP) in renovascular hypertensive rats. Neurogenic hypertension was induced by placing a silver clip (gap of 0.2 mm) around the left renal artery, and after 5 weeks of renal clip placement, the rats were treated orally with melatonin (30 mg/kg/day) by gavage for 15 days. At the end of melatonin treatment, we evaluated baseline mean arterial pressure (MAP), renal sympathetic nerve activity (rSNA), and the baroreflex control of heart rate (HR) and rSNA. Reactive oxygen species (ROS) were detected within the brainstem regions by dihydroethidium staining. Melatonin treatment effectively reduced baseline MAP and sympathoexcitation to the ischemic kidney in renovascular hypertensive rats. The baroreflex control of HR and rSNA were improved after melatonin treatment in the hypertensive group. Moreover, there was a preferential decrease in ROS within the rostral ventrolateral medulla (RVLM) and the nucleus of the solitary tract (NTS). Therefore, our study indicates that melatonin is effective in reducing renal sympathetic overactivity associated with decreased ROS in brainstem regions that regulate BP in an experimental model of neurogenic hypertension.
引用
收藏
页码:1683 / 1691
页数:8
相关论文