A method of proving non-unitarity of representations of p-adic groups I

被引:0
作者
Marcela Hanzer
Marko Tadić
机构
[1] University of Zagreb,Department of Mathematics
来源
Mathematische Zeitschrift | 2010年 / 265卷
关键词
Classical ; -adic groups; Generalized Steinberg representation; Unitary representations; Non-unitarity criterion; 22E35; 22E50; 11F70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we exhibit a new method of proving non-unitarity of representations, based on semi simplicity of unitarizable representations. Non-unitarity is proved for a half of all irreducible representations of classical p-adic groups whose infinitesimal character is the same as the infinitesimal character of a generalized Steinberg representation (as defined in Tadić, Am J Math 120:159–210, 1998). Only the Steinberg representation and its Aubert dual are expected to be unitary here. In this way we partially generalize a result of Casselman to the case of classical groups. Our argument is completely different from Casselman’s argument (which is hard to extend to this case). It requires a very limited knowledge of the inducing cuspidal representation.
引用
收藏
页码:799 / 816
页数:17
相关论文
共 25 条
[1]  
Aubert A.-M.(1995)Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longeur finie d’un groupe réductif Trans. Am. Math. Soc. 347 2179-2189
[2]  
Aubert A.-M.(1996)-adique Trans. Am. Math. Soc. 348 4687-4690
[3]  
Ban D.(1999)Erratum to Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longeur finie d’un groupe réductif Glas. Mat. Ser. III 34 147-185
[4]  
Ban D.(2003)-adique Represent. Theory 7 440-480
[5]  
Jantzen C.(1977)Parabolic induction and Jacquet modules of representations of Ann. Sci. École Norm. Sup. 10 441-472
[6]  
Bernstein I.N.(1982)(2 J. Fac. Sci. Tokyo 28 907-928
[7]  
Zelevinsky A.V.(2009), Israel J. Math. 169 251-294
[8]  
Casselman W.(1979)) J. Funct. Anal. 32 72-96
[9]  
Hanzer M.(1997)Degenerate principal series for even orthogonal groups Am. J. Math. 119 1213-1262
[10]  
Howe R.(2002)Induced representations of reductive J. Am. Math. Soc. 15 715-786