An analog of Rudin’s theorem for continuous radial positive definite functions of several variables

被引:0
作者
A. V. Efimov
机构
[1] Ural Federal University,Institute of Mathematics and Computer Science
来源
Proceedings of the Steklov Institute of Mathematics | 2014年 / 284卷
关键词
positive definite functions; multidimensional radial functions; Rudin’s theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Let [inline-graphic not available: see fulltext] be the class of radial real-valued functions of m variables with support in the unit ball \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{B}$\end{document} of the space ℝm that are continuous on the whole space ℝm and have a nonnegative Fourier transform. For m ≥ 3, it is proved that a function f from the class [inline-graphic not available: see fulltext] can be presented as the sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum {f_k \tilde *f_k } $\end{document} of at most countably many self-convolutions of real-valued functions fk with support in the ball of radius 1/2. This result generalizes the theorem proved by Rudin under the assumptions that the function f is infinitely differentiable and the functions fk are complex-valued.
引用
收藏
页码:79 / 86
页数:7
相关论文
共 7 条
[1]  
Boas R P(1945)Inequalities for Fourier transforms of positive functions Duke Math. J. 12 189-206
[2]  
Kac M(2004)Convolution roots of radial positive definite functions with compact support Trans. Amer. Math. Soc. 356 4655-4685
[3]  
Ehm W(1970)An extension theorem for positive-definite functions Duke Math. J. 37 49-53
[4]  
Gneiting T(2012)A version of Turán’s problem for positive definite functions of several variables Proc. Steklov Inst. Math. 277 S93-S112
[5]  
Richards D(undefined)undefined undefined undefined undefined-undefined
[6]  
Rudin W(undefined)undefined undefined undefined undefined-undefined
[7]  
Efimov A V(undefined)undefined undefined undefined undefined-undefined