Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions

被引:0
作者
Debao Yan
机构
[1] Heze University,School of Mathematics and Statistics
来源
Boundary Value Problems | / 2022卷
关键词
Singular boundary value problem; Fractional differential equation; Integral boundary condition; Fixed point theorem; 34A08; 34B10; 34B16;
D O I
暂无
中图分类号
学科分类号
摘要
We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document}, 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems.
引用
收藏
相关论文
共 62 条
[41]  
Zhang X.(undefined)undefined undefined undefined undefined-undefined
[42]  
Zhong Q.(undefined)undefined undefined undefined undefined-undefined
[43]  
Agarwal R.P.(undefined)undefined undefined undefined undefined-undefined
[44]  
O’regan D.(undefined)undefined undefined undefined undefined-undefined
[45]  
Staněk S.(undefined)undefined undefined undefined undefined-undefined
[46]  
Qiu T.(undefined)undefined undefined undefined undefined-undefined
[47]  
Bai Z.(undefined)undefined undefined undefined undefined-undefined
[48]  
Jleli M.(undefined)undefined undefined undefined undefined-undefined
[49]  
Samet B.(undefined)undefined undefined undefined undefined-undefined
[50]  
Guo L.(undefined)undefined undefined undefined undefined-undefined