Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions

被引:0
作者
Debao Yan
机构
[1] Heze University,School of Mathematics and Statistics
来源
Boundary Value Problems | / 2022卷
关键词
Singular boundary value problem; Fractional differential equation; Integral boundary condition; Fixed point theorem; 34A08; 34B10; 34B16;
D O I
暂无
中图分类号
学科分类号
摘要
We concentrate on a category of singular boundary value problems of fractional differential equations with integral boundary conditions, in which the nonlinear function f is singular at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document}, 1. We use Banach’s fixed-point theorem and Hölder’s inequality to verify the existence and uniqueness of a solution. Moreover, also we prove the existence of solutions by Krasnoselskii’s and Schaefer’s fixed point theorems.
引用
收藏
相关论文
共 62 条
  • [1] Lakshmikantham V.(2008)Basic theory of fractional differential equations Nonlinear Anal. 69 2677-2682
  • [2] Vatsala A.S.(2007)Theory of fractional differential inequalities and applications Commun. Appl. 11 395-402
  • [3] Lakshmikantham V.(2006)Positive solutions for boundary value problems of nonlinear fractional differential equations Electron. J. Differ. Equ. 2006 401-411
  • [4] Vatsala A.S.(2009)Boundary value problems for fractional differential equations Georgian Math. J. 16 495-505
  • [5] Zhang S.(2005)Positive solutions for boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 710-719
  • [6] Agarwal R.P.(2009)Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces Electron. J. Differ. Equ. 2009 609-625
  • [7] Benchora M.(2010)The positive properties of the Green function for Dirichlet type boundary value problems of nonlinear fractional differential equations and its application Nonlinear Anal. 72 4676-4688
  • [8] Hamani S.(1996)Existence and uniqueness for a nonlinear fractional differential equation J. Math. Anal. Appl. 204 480-487
  • [9] Bai Z.(2009)Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equations Nonlinear Anal. 71 51-61
  • [10] Liu H.(2010)On four point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order Appl. Math. Comput. 217 339-350