Random Walk on Random Infinite Looptrees

被引:0
作者
Jakob E. Björnberg
Sigurdur Örn Stefánsson
机构
[1] Chalmers and Gothenburg University,Department of Mathematical Sciences
[2] The Science Institute,Division of Mathematics
[3] University of Iceland,undefined
来源
Journal of Statistical Physics | 2015年 / 158卷
关键词
Looptrees; Random trees; Random walk; Spectral dimension; 05C80; 05C81; 05C05; 60J80; 60K37;
D O I
暂无
中图分类号
学科分类号
摘要
Looptrees have recently arisen in the study of critical percolation on the uniform infinite planar triangulation. Here we consider random infinite looptrees defined as the local limit of the looptree associated with a critical Galton–Watson tree conditioned to be large. We study simple random walk on these infinite looptrees by means of providing estimates on volume and resistance growth. We prove that if the offspring distribution of the Galton–Watson process is in the domain of attraction of a stable distribution with index α∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2]$$\end{document} then the spectral dimension of the looptree is 2α/(α+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\alpha /(\alpha +1)$$\end{document}.
引用
收藏
页码:1234 / 1261
页数:27
相关论文
共 29 条
  • [1] Aldous D(1998)Tree-valued Markov chains derived from Galton-Watson processes Ann. Inst. H. Poincare Probab. Stat. 34 637-686
  • [2] Pitman J(1982)Density of states on fractals: “fractons” J. Phys. (Paris) Lett. 43 625-631
  • [3] Alexander S(2006)Random walk on the incipient infinite cluster on trees Ill. J. Math. 50 33-65
  • [4] Orbach R(2008)Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive Electron. J. Probab. 13 1419-1441
  • [5] Barlow MT(2006)Random walks on combs J. Phys. A A39 1009-1038
  • [6] Kumagai T(2007)The spectral dimension of generic trees J. Stat. Phys. 128 1237-1260
  • [7] Croydon D(2011)Random trees with superexponential branching weights J. Phys. A: Math. Theor. 44 485002-252
  • [8] Kumagai T(2012)Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation Prob. Surv. 9 103-313
  • [9] Durhuus B(2008)The spectral dimension of random brushes J. Phys. A 41 045005-806
  • [10] Jonsson T(2011)Condensation in nongeneric trees J. Stat. Phys. 142 277-487