On bi-hamiltonian structure of some integrable systems on so*(4)

被引:0
作者
A V Tsiganov
机构
[1] St. Petersburg State University,
来源
Journal of Nonlinear Mathematical Physics | 2008年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We classify quadratic Poisson structures on so*(4) and e*(3), which have the same foliations by symplectic leaves as canonical Lie-Poisson tensors. The separated variables for some of the corresponding bi-integrable systems are constructed.
引用
收藏
页码:171 / 185
页数:14
相关论文
共 16 条
[1]  
Falqui G(2003)Separation of variables for bi-Hamiltonian systems Math. Phys. Anal. Geom 6 139-179
[2]  
Pedroni M(2004)Integrable systems on so(4) related with XXX spin chains with boundaries J. Phys. A 37 4843-4849
[3]  
Goremykin OV(2003)Poisson maps and integrable deformations of Kowalevski top J. Phys. A 36 8035-8048
[4]  
Tsiganov AV(1977)Les varietes de Poisson et leurs algebres de Lie associeees J. Diff. Geom 12 253-300
[5]  
Komarov IV(2004)On one class of quadratic so(4)-hamiltonians Doklady RAN 394 602-605
[6]  
Sokolov VV(2006)Integrable quadratic classical hamiltonians on J. Phys. A 39 1915-1926
[7]  
Tsiganov AV(2002)On integrable deformation of the Poincare system, Reg. and Chaot Dyn 7 331-337
[8]  
Lichnerowicz A(2007)Compatible Lie-Poisson brackets on Lie algebras Teor.Math.Phys 151 460-474
[9]  
Sokolov VV(2007)On the two different bi-Hamiltonian structures for the Toda lattice J. Phys. A 40 6395-6406
[10]  
Sokolov VV(2007)A family of the Poisson brackets compatible with the Sklyanin bracket J. Phys. A 40 4803-4816