The Almost Sure Limits of the Minimal Position and the Additive Martingale in a Branching Random Walk

被引:0
作者
Yueyun Hu
机构
[1] Université Paris 13,Département de Mathématiques
来源
Journal of Theoretical Probability | 2015年 / 28卷
关键词
Branching random walk; Minimal position; Additive martingale; Integral tests; 60J80; 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a real-valued branching random walk in the boundary case. Using the techniques developed by Aïdékon and Shi (2012), we give two integral tests which describe, respectively, the lower limits for the minimal position and the upper limits for the associated additive martingale.
引用
收藏
页码:467 / 487
页数:20
相关论文
共 29 条
  • [1] Addario-Berry L(2009)Minima in branching random walks Ann. Probab. 37 1044-1079
  • [2] Reed B(2011)Survival of branching random walks with absorption Stoch. Process. Appl. 121 1901-1937
  • [3] Aïdékon E(1976)The first- and last-birth problems for a multitype age-dependent branching process Adv. Appl. Probab. 8 446-459
  • [4] Jaffuel B(2004)Measure change in multitype branching Adv. Appl. Probab. 36 544-581
  • [5] Biggins JD(2005)Fixed points of the smoothing transform: the boundary case Electron. J. Probab. 10 609-631
  • [6] Biggins JD(1978)Maximal displacement of branching Brownian motion Comm. Pure Appl. Math. 31 531-581
  • [7] Kyprianou AE(2009)Tightness for a family of recursion equations Ann. Probab. 37 615-653
  • [8] Biggins JD(1991)Growing conditioned trees Stoch. Proc. Appl. 39 117-130
  • [9] Kyprianou AE(1942)On the law of the iterated logarithm Ann. Math. (2) 43 419-436
  • [10] Bramson MD(1979)A local limit theorem for the first overshoot Sib. Math. J. 20 130-138