Poles of zeta functions of complete intersections

被引:2
|
作者
Wan, DQ [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
pole; zeta function; complete intersection;
D O I
10.1142/S0252959900000212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vanishing theorem is proved for l-adic cohomology with compact support on an affine (singular) complete intersection. As an application, it is shown that for an affine complete intersection defined over a finite field of q elements, the reciprocal "poles" of the zeta function are always divisible by q as algebraic integers. A p-adic proof is also given, which leads to further q-divisibility of the poles or equivalently an improvement of the polar part of the Ax-Katz theorem for an affine complete intersection. Similar results hold for a projective complete intersection.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [1] POLES OF ZETA FUNCTIONS OF COMPLETE INTERSECTIONS
    WAN DAQING(Department of Mathematics
    ChineseAnnalsofMathematics, 2000, (02) : 187 - 200
  • [2] On the poles of topological zeta functions
    Lemahieu, Ann
    Segers, Dirk
    Veys, Willem
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) : 3429 - 3436
  • [4] On zeroes and poles of Helson zeta functions
    Bochkov, I
    Romanov, R.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (08)
  • [5] Monodromy eigenvalues and poles of zeta functions
    Cauwbergs, Thomas
    Veys, Willem
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (02) : 342 - 350
  • [6] Poles of zeta functions on normal surfaces
    Rodrigues, B
    Veys, W
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 : 164 - 196
  • [7] On the smallest poles of topological zeta functions
    Segers, D
    Veys, W
    COMPOSITIO MATHEMATICA, 2004, 140 (01) : 130 - 144
  • [8] POLES OF MAXIMAL ORDER OF MOTIVIC ZETA FUNCTIONS
    Nicaise, Johannes
    Xu, Chenyang
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (02) : 217 - 243
  • [9] Poles of Archimedean zeta functions for analytic mappings
    Leon-Cardenal, E.
    Veys, Willem
    Zuniga-Galindo, W. A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 1 - 21
  • [10] Ruled exceptional surfaces and the poles of motivic zeta functions
    Rodrigues, B.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (05): : 1098 - 1120