Isometry invariant permutation codes and mutually orthogonal Latin squares

被引:6
作者
Janiszczak, Ingo [1 ]
Staszewski, Reiner [1 ]
机构
[1] Univ Duisburg Essen, Fac Math, D-45127 Essen, Germany
关键词
bounds; isometry; mutually orthogonal Latin squares; permutation code; permutation arrays;
D O I
10.1002/jcd.21661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Commonly, the direct construction and the description of mutually orthogonal Latin squares (MOLS) make use of difference or quasi-difference matrices. Now there exists a correspondence between MOLS and separable permutation codes. We present separable permutation codes of length 35, 48, 63, and 96 and minimum distance 34, 47, 62, and 95 consisting of 6 x 35, 10 x 48, 8 x 63, and 8 x 96 codewords, respectively. Using the correspondence, this gives 6 MOLS for n = 35, 10 MOLS for n = 48, 8 MOLS for n = 63, and 8 MOLS for n = 96. The codes are given by generators of an appropriate subgroup U of the isometry group of the symmetric group S-n and U-orbit representatives. This gives an alternative uniform way to describe the MOLS.
引用
收藏
页码:541 / 551
页数:11
相关论文
共 16 条
[1]   Concerning eight mutually orthogonal Latin squares [J].
Abel, R. Julian R. ;
Cavenagh, Nicholas .
JOURNAL OF COMBINATORIAL DESIGNS, 2007, 15 (03) :255-261
[2]   Existence of Five MOLS of Orders 18 and 60 [J].
Abel, R. Julian R. .
JOURNAL OF COMBINATORIAL DESIGNS, 2015, 23 (04) :135-139
[3]  
[Anonymous], 1974, DISCRETE MATH
[4]  
[Anonymous], 2018, GAP GROUPS ALG PROGR
[5]  
Bose R.C., 1960, Can. J. Math, V12, P189, DOI [10.4153/CJM-1960-016-5, DOI 10.4153/CJM-1960-016-5]
[6]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[7]  
Colbourn C.J., 2007, The CRC Handbook of Combinatorial Designs
[8]   Permutation arrays for powerline communication and mutually orthogonal Latin squares [J].
Colbourn, CJ ;
Klove, T ;
Ling, ACH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) :1289-1291
[9]  
Euler L., 1782, OPERA OMNIA 1, V7, P291
[10]  
Farahat H., 1960, J LOND MATH SOC, V35, P215