The Ten Martini Problem

被引:234
作者
Avila, Artur [1 ,2 ]
Jitomirskaya, Svetlana [3 ]
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
QUASI-PERIODIC OPERATORS; MATHIEU OPERATOR; CANTOR SPECTRUM; LOCALIZATION; CONTINUITY; POTENTIALS; THEOREM;
D O I
10.4007/annals.2009.170.303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjecture (known as the "Ten Martini Problem" after Kac and Simon) that the spectrum of the almost Mathieu operator is a Cantor set for all nonzero values of the coupling and all irrational frequencies.
引用
收藏
页码:303 / 342
页数:40
相关论文
共 24 条
[1]  
[Anonymous], COMMUN MATH PHYS
[2]  
[Anonymous], PROGR MATH
[3]   Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
ANNALS OF MATHEMATICS, 2006, 164 (03) :911-940
[4]   ON THE MEASURE OF THE SPECTRUM FOR THE ALMOST MATHIEU OPERATOR [J].
AVRON, J ;
VONMOUCHE, PHM ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :103-118
[5]   ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES [J].
AVRON, J ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :369-391
[6]  
AZBEL MY, 1964, SOV PHYS JETP-USSR, V19, P634
[7]   CANTOR SPECTRUM FOR THE ALMOST MATHIEU EQUATION [J].
BELLISSARD, J ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 48 (03) :408-419
[8]  
BEREZANSKIL JM, 1968, TRANSL MATH MONOGR, V17
[9]   Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential [J].
Bourgain, J ;
Jitomirskaya, S .
JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) :1203-1218
[10]   GAUSS POLYNOMIALS AND THE ROTATION ALGEBRA [J].
CHOI, MD ;
ELLIOTT, GA ;
YUI, NK .
INVENTIONES MATHEMATICAE, 1990, 99 (02) :225-246