System of Riemann-Liouville fractional differential equations with nonlocal boundary conditions: Existence, uniqueness, and multiplicity of solutions

被引:4
作者
Padhi, Seshadev [1 ]
Prasad, B. S. R., V [2 ]
Mahendru, Divya [1 ]
机构
[1] Birla Inst Technol, Dept Math, Ranchi 835215, Bihar, India
[2] Vellore Inst Technol, Dept Math, Vellore, Tamil Nadu, India
关键词
fractional differential equations; multi point boundary conditions; positive solutions; Riemann-Liouville derivative; POSITIVE SOLUTIONS; COUPLED SYSTEM; NUMERICAL-SOLUTION;
D O I
10.1002/mma.5812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, uniqueness, and multiplicity of positive solutions for a system of Riemann-Liouville fractional differential equations with multipoint boundary conditions. We use Schauder's and Avery Henderson fixed point theorem to prove our results.
引用
收藏
页码:8125 / 8149
页数:25
相关论文
共 53 条
[1]   Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painleve equations in Hilbert space [J].
Abu Arqub, Omar ;
Al-Smadi, Mohammed .
CHAOS SOLITONS & FRACTALS, 2018, 117 :161-167
[2]   Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator [J].
Abu Arqub, Omar ;
Maayah, Banan .
CHAOS SOLITONS & FRACTALS, 2018, 117 :117-124
[3]   Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions [J].
Abu Arqub, Omar ;
Al-Smadi, Mohammed .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) :1577-1597
[4]   Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space [J].
Abu Arqub, Omar .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) :1759-1780
[5]   On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
CHAOS SOLITONS & FRACTALS, 2016, 83 :234-241
[6]   Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique [J].
Akgul, Ali ;
Inc, Mustafa ;
Karatas, Esra ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,
[7]   Modeling some real phenomena by fractional differential equations [J].
Almeida, Ricardo ;
Bastos, Nuno R. O. ;
Monteiro, M. Teresa T. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (16) :4846-4855
[8]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[9]  
Atanackovic T.M., 2014, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, DOI DOI 10.1002/9781118577530
[10]  
Avery R.I., 2001, Comm. Appl. Nonlinear Anal, V8, P27