On Nonconvex Pseudomonotone Equilibrium Problems with Applications

被引:11
作者
Lara, F. [1 ]
机构
[1] Univ Tarapaca, Fac Ciencias, Dept Matemat, Arica, Chile
关键词
Nonconvex optimization; Nonsmooth analysis; Equilibrium problems; Variational inequalities; Golden ratio algorithms; MIXED VARIATIONAL-INEQUALITIES; OPTIMALITY CONDITIONS; EXISTENCE; DERIVATIVES;
D O I
10.1007/s11228-021-00586-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.
引用
收藏
页码:355 / 372
页数:18
相关论文
共 50 条
[41]   The extragradient-Armijo method for pseudomonotone equilibrium problems and strict pseudocontractions [J].
Pham Ngoc Anh ;
Nguyen Duc Hien .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[42]   The Borwein-Preiss variational principle for nonconvex countable systems of equilibrium problems [J].
Plubtieng, Somyot ;
Seangwattana, Thidaporn .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05) :2224-2232
[43]   On Economic Equilibrium Type Problems with Applications [J].
Naniewicz, Zdzislaw .
SET-VALUED AND VARIATIONAL ANALYSIS, 2011, 19 (03) :417-456
[44]   Equilibrium problems on Riemannian manifolds with applications [J].
Wang, Xiangmei ;
Lopez, Genaro ;
Li, Chong ;
Yao, Jen-Chih .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) :866-891
[45]   An extragradient projection method for strongly quasiconvex equilibrium problems with applications [J].
F. Lara ;
R. T. Marcavillaca ;
L. H. Yen .
Computational and Applied Mathematics, 2024, 43
[46]   The subgradient extragradient method extended to pseudomonotone equilibrium problems and fixed point problems in Hilbert space [J].
Jun Yang ;
Hongwei Liu .
Optimization Letters, 2020, 14 :1803-1816
[47]   The subgradient extragradient method extended to pseudomonotone equilibrium problems and fixed point problems in Hilbert space [J].
Yang, Jun ;
Liu, Hongwei .
OPTIMIZATION LETTERS, 2020, 14 (07) :1803-1816
[48]   An inertial extragradient method for solving strongly pseudomonotone equilibrium problems in Hilbert spaces [J].
Le, Thi Thanh Hai ;
Thong, Duong Viet ;
Vuong, Phan Tu .
COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06)
[49]   A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance [J].
Eskandani, G. Zamani ;
Raeisi, M. ;
Rassias, Themistocles M. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
[50]   Projected Subgradient Algorithms for Pseudomonotone Equilibrium Problems and Fixed Points of Pseudocontractive Operators [J].
Yao, Yonghong ;
Shahzad, Naseer ;
Yao, Jen-Chih .
MATHEMATICS, 2020, 8 (04)