On Nonconvex Pseudomonotone Equilibrium Problems with Applications

被引:11
作者
Lara, F. [1 ]
机构
[1] Univ Tarapaca, Fac Ciencias, Dept Matemat, Arica, Chile
关键词
Nonconvex optimization; Nonsmooth analysis; Equilibrium problems; Variational inequalities; Golden ratio algorithms; MIXED VARIATIONAL-INEQUALITIES; OPTIMALITY CONDITIONS; EXISTENCE; DERIVATIVES;
D O I
10.1007/s11228-021-00586-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.
引用
收藏
页码:355 / 372
页数:18
相关论文
共 50 条
[21]   PARAMETRIC EQUILIBRIUM PROBLEMS GOVERNED BY TOPOLOGICALLY PSEUDOMONOTONE BIFUNCTIONS [J].
Bogdan, Marcel ;
Pascali, Eduardo .
MATHEMATICA SLOVACA, 2015, 65 (05) :1199-1208
[22]   BILEVEL VECTOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS: DUALITY AND EXISTENCE [J].
Chen, Jiawei ;
Liou, Yeong-Cheng ;
Wen, Ching-Feng .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (07) :1293-1303
[23]   Viscosity-type method for solving pseudomonotone equilibrium problems in a real Hilbert space with applications [J].
Rehman, Habib Ur ;
Kumam, Poom ;
Sitthithakerngkiet, Kanokwan .
AIMS MATHEMATICS, 2021, 6 (02) :1538-1560
[24]   A Hybrid Extragradient Method for Pseudomonotone Equilibrium Problems and Fixed Point Problems [J].
Pham Ngoc Anh .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) :107-116
[25]   An extragradient projection method for strongly quasiconvex equilibrium problems with applications [J].
Lara, F. ;
Marcavillaca, R. T. ;
Yen, L. H. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03)
[27]   Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems [J].
A. Iusem ;
F. Lara .
Journal of Optimization Theory and Applications, 2022, 193 :443-461
[28]   ON THE BREGMAN INEXACT PROXIMAL INTERIOR POINT ALGORITHM FOR ABSTRACT PSEUDOMONOTONE EQUILIBRIUM PROBLEMS [J].
Ait Mansour, M. ;
Chbani, Z. ;
Riahi, H. .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (04) :681-710
[29]   AN EXTRAGRADIENT ALGORITHM FOR STRONGLY PSEUDOMONOTONE EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS [J].
Khammahawong, Konrawut ;
Kumam, Poom ;
Chaipunya, Parin ;
Yao, Jen-Chih ;
Wen, Ching-Feng ;
Jirakitpuwapat, Wachirapong .
THAI JOURNAL OF MATHEMATICS, 2020, 18 (01) :350-371
[30]   Nonconvex Equilibrium Problems Via a KKM Theorem [J].
Moradi, Sirous ;
Shokouhnia, Masoomeh ;
Jafari, Somaye .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (06) :1805-1825