Preparation and characterization of Co-Sn-C anodes for lithium-ion batteries

被引:21
|
作者
He, Jianchao [1 ]
Zhao, Hailei [1 ,2 ]
Wang, Mengwei [1 ]
Jia, Xidi [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Beijing Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
关键词
Co-Sn-C composites; Alloy; Carbothermal reduction; Anode; Electrochemical performance; NEGATIVE ELECTRODE MATERIALS; TIN-COBALT-CARBON; ELECTROCHEMICAL PERFORMANCE; SECONDARY BATTERIES; RECHARGEABLE BATTERIES; ALLOY ANODES; SYSTEM; COMPOSITE; NANOSIZE; CELLS;
D O I
10.1016/j.mseb.2010.03.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sn-based, multicomponent composites have instilled new life in the research of novel anode materials for lithium ion batteries. CoSn2Cx anode materials with different amounts of carbon were synthesized by carbothermal reduction method, carbon component was in situ remained. This approach is simple and mass-productive. The effects of carbon component on the properties of CoSn2Cx were investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic cycling tests. Carbon can prevent the alloy particles from agglomeration and thus decrease the alloy average particle size dispersing in carbon matrix. Carbon addition improves the cycling stability of Co-Sn-C composite electrode, but decreases its specific capacity. The incorporation of carbon improves the rate-capability of Co-Sn-C composite remarkably. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 50 条
  • [21] Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries
    Li, Shuli
    Chen, Chen
    Fu, Kun
    Xue, Leigang
    Zhao, Chengxin
    Zhang, Shu
    Hu, Yi
    Zhou, Lan
    Zhang, Xiangwu
    SOLID STATE IONICS, 2014, 254 : 17 - 26
  • [22] Development and characterization of nanostructure tin alloys as anodes in lithium-ion batteries
    Peled, E
    Ulus, A
    Rosenberg, Y
    NEW MATERIALS FOR BATTERIES AND FUEL CELLS, 2000, 575 : 151 - 163
  • [23] Development and characterization of nanostructure tin alloys as anodes in lithium-ion batteries
    Peled, E.
    Ulus, A.
    Rosenberg, Y.
    2000, Materials Research Society, Warrendale, PA, United States (575):
  • [24] Elemental Foil Anodes for Lithium-Ion Batteries
    Heligman, Brian T.
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2021, 6 (08) : 2666 - 2672
  • [25] Overview of carbon anodes for lithium-ion batteries
    Zaghib, K
    Kinoshita, K
    NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 27 - 38
  • [26] Microstructured silicon anodes for lithium-ion batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    V. B. Voronkov
    A. V. Parfen’eva
    V. A. Tolmachev
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2015, 51 : 899 - 907
  • [27] C/C composite anodes for long-life lithium-ion batteries
    Leire Zubizarreta
    Mayte Gil-Agustí
    Volodymyr Khomenko
    Viacheslav Barsukov
    Journal of Solid State Electrochemistry, 2017, 21 : 3557 - 3566
  • [28] Microstructured silicon anodes for lithium-ion batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    Voronkov, V. B.
    Parfen'eva, A. V.
    Tolmachev, V. A.
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (10) : 899 - 907
  • [29] C/C composite anodes for long-life lithium-ion batteries
    Zubizarreta, Leire
    Gil-Agusti, Mayte
    Khomenko, Volodymyr
    Barsukov, Viacheslav
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (12) : 3557 - 3566
  • [30] Analysis of SiO anodes for lithium-ion batteries
    Miyachi, M
    Yamamoto, H
    Kawai, H
    Ohta, T
    Shirakata, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) : A2089 - A2091