On a problem of linear system control under incomplete information about the phase coordinates

被引:0
作者
Maksimov, V. I. [1 ,2 ]
机构
[1] Ural Fed Univ, Ekaterinburg, Russia
[2] Russian Acad Sci, Ural Branch, Inst Math & Mech, Ekaterinburg, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0005117916060011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consideration was given to the problem of feedback control of a linear system. An algorithm to solve it was presented under the assumption that the linear combinations of the system phase states are measured with error at sufficiently frequent discrete time instants. The algorithm is stable to the information and computation errors.
引用
收藏
页码:943 / 958
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 2000, DOKL MATH
[2]  
[Anonymous], 1974, Pozitsionnye differentsial'nye igry (Positional Differential Games)
[3]  
[Anonymous], VVEDENIE TEORIYA RAZ
[4]  
Blizorukova MS, 2006, AUTOMAT REM CONTR+, V67, P461, DOI [10.1134/S0005117906030106, 10.1134/S000511790G030106]
[5]  
Krasovskii N. N, 1985, Control of a dynamical system
[6]   On combination of the processes of reconstruction and guaranteeing control [J].
Kryazhimskii, A. V. ;
Maksimov, V. I. .
AUTOMATION AND REMOTE CONTROL, 2013, 74 (08) :1235-1248
[7]  
Kryazhimskiy AV, 2009, T I MAT MEKH URO RAN, V15, P139
[8]   Resource-Saving Tracking Problem with Infinite Time Horizon [J].
Kryazhimskiy, A. V. ;
Maksimov, V. I. .
DIFFERENTIAL EQUATIONS, 2011, 47 (07) :1004-1013
[9]  
Osipov Y. S., 1995, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions
[10]   NN Krasovskii's extremal shift method and problems of boundary control [J].
Osipov, Yu. S. ;
Kryazhimskii, A. V. ;
Maksimov, V. I. .
AUTOMATION AND REMOTE CONTROL, 2009, 70 (04) :577-588