Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice

被引:126
作者
Liu, XL
Wei, J
Peng, DH
Layne, MD
Yet, SF
机构
[1] Brigham & Womens Hosp, Div Pulm & Crit Care, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA
关键词
D O I
10.2337/diabetes.54.3.778
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Increased production of reactive oxygen species contributes to the etiology of diabetes complications. Pathophysiological stimuli that increase oxidative stress upregulate heme oxygenase (HO)-1, a cytoprotective heme-degrading enzyme. We hypothesized that HO-1 may be important in myocardial injury that is exacerbated by diabetes. To test this hypothesis, the left anterior descending coronary arteries of nondiabetic and diabetic wild-type (HO-1(+/+)) and HO-1 null (HO-1(-/-)) mice were ligated for 1 h followed by 24 h reperfusion. The absence of HO-1 significantly increased myocardial infarct size (36.4 +/- 2.0 vs. 21.4 +/- 1.8% in HO-1(+/+) mice), while cardiac-specific overexpression of HO-1 protected against myocardial ischemic injury in diabetic mice. Despite similar high blood glucose levels, diabetic HO-1(-/-) mice had fourfold higher oxidative stress and larger infarcts (56.0 +/- 2.8%) than diabetic HO-1(+/+) mice (30.8 +/- 6.1%). Moreover, hyperglycemia increased the mortality of HO-1(-/-) mice (31.3%) after ischemia/reperfusion injury, and 55% of diabetic HO-1(-/-) mice had mural thrombi in the left ventricles. The increased mortality of diabetic HO-1(-/-) mice may be in part due to formation of left ventricular mural thrombi. Our data demonstrate that the absence of HO-1 renders animals more susceptible to myocardial ischemia/reperfusion damage and diabetes worsens the injury.
引用
收藏
页码:778 / 784
页数:7
相关论文
共 46 条
[1]   Heme oxygenase-1 attenuates glucose-mediated cell growth arrest and apoptosis in human microvessel endothelial cells [J].
Abraham, NG ;
Kushida, T ;
McClung, J ;
Weiss, M ;
Quan, S ;
Lafaro, R ;
Darzynkiewicz, Z ;
Wolin, M .
CIRCULATION RESEARCH, 2003, 93 (06) :507-514
[2]   Mechanisms determining course and outcome of diabetic patients who have had acute myocardial infarction [J].
Aronson, D ;
Rayfield, EJ ;
Chesebro, JH .
ANNALS OF INTERNAL MEDICINE, 1997, 126 (04) :296-306
[3]   Role of oxidative stress in diabetic complications - A new perspective on an old paradigm [J].
Baynes, JW ;
Thorpe, SR .
DIABETES, 1999, 48 (01) :1-9
[4]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[5]  
BRUNE B, 1987, MOL PHARMACOL, V32, P497
[6]  
CHOI SY, 1996, J PARODONTOL IMPLANT, V15, P19
[7]   Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress [J].
Clark, JE ;
Foresti, R ;
Green, CJ ;
Motterlini, R .
BIOCHEMICAL JOURNAL, 2000, 348 (348) :615-619
[8]   Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction [J].
Clark, JE ;
Foresti, R ;
Sarathchandra, P ;
Kaur, H ;
Green, CJ ;
Motterlini, R .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 278 (02) :H643-H651
[9]   Oxidative damage to DNA in diabetes mellitus [J].
Dandona, P ;
Thusu, K ;
Cook, S ;
Snyder, B ;
Makowski, J ;
Armstrong, D ;
Nicotera, T .
LANCET, 1996, 347 (8999) :444-445
[10]   POSTREPERFUSION INFLAMMATION - A MODEL FOR REACTION TO INJURY IN CARDIOVASCULAR-DISEASE [J].
ENTMAN, ML ;
SMITH, CW .
CARDIOVASCULAR RESEARCH, 1994, 28 (09) :1301-1311