Random Attractors for Non-autonomous Stochastic Lattice FitzHugh-Nagumo Systems with Random Coupled Coefficients

被引:17
作者
Wang, Zhaojuan [1 ]
Zhou, Shengfan [2 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 03期
基金
中国国家自然科学基金;
关键词
Stochastic lattice dynamical system; Random attractor; Random coupled coefficient; White noise; REACTION-DIFFUSION EQUATIONS; DYNAMICAL-SYSTEMS; UPPER SEMICONTINUITY; ASYMPTOTIC-BEHAVIOR; PULLBACK ATTRACTORS; KERNEL SECTIONS; SUFFICIENT; EXISTENCE;
D O I
10.11650/tjm.20.2016.6699
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the non-autonomous stochastic lattice FitzHugh-Nagumo system with random coupled coefficients and multiplicative white noise. We consider the existence of random attractors in a weighted space l(rho)(1) x l(rho)(2) for this system, and establish the upper semicontinuity of random attractors as the intensity of noise approaches zero.
引用
收藏
页码:589 / 616
页数:28
相关论文
共 49 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]   RANDOM ATTRACTORS FOR STOCHASTIC FITZHUGH-NAGUMO SYSTEMS DRIVEN BY DETERMINISTIC NON-AUTONOMOUS FORCING [J].
Adili, Abiti ;
Wang, Bixiang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03) :643-666
[3]  
[Anonymous], 2002, LECT NOTES MATH
[4]  
Arnold L., 1998, SPRINGER MONGRAPHS M
[5]   Attractors of non-autonomous stochastic lattice systems in weighted spaces [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 289 :32-50
[6]   Random attractors for stochastic reaction-diffusion equations on unbounded domains [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) :845-869
[7]   Attractors for Stochastic lattice dynamical systems [J].
Bates, PW ;
Lisei, H ;
Lu, KN .
STOCHASTICS AND DYNAMICS, 2006, 6 (01) :1-21
[8]   Attractors for lattice dynamical systems [J].
Bates, PW ;
Lu, KN ;
Wang, BX .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (01) :143-153
[9]  
Caraballo T, 2003, DYNAM CONT DIS SER A, V10, P491
[10]   Attractors for stochastic lattice dynamical systems with a multiplicative noise [J].
Caraballo, Tomas ;
Lu, Kening .
FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (03) :317-335