Spanning multi-paths in hypercubes

被引:31
作者
Caha, Rostislav [1 ]
Koubek, Vaclav
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800 1, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, Dept Theoret Comp Sci & Math Log, Prague 11800 1, Czech Republic
关键词
hypercube; Hamiltonian path; multi-path;
D O I
10.1016/j.disc.2005.12.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set A of vertices of a hypercube is called balanced if \{A is an element of A\\A\ = 0 mod 2}\ = \{A is an element of A \\A\ = 1 mod 2}\. We prove that for every natural number n there exists a natural number pi(1)(n) such that for every hypercube Q with dim(Q) >= pi(1)(n) there exists a family {P-i}(i=1)(n) of pairwise vertex-disjoint paths P-i between A(i) and B-i for i = 1, 2, n with V(Q) = boolean OR(n)(i=1) V(P-i) if and only if {A(i), B-i\i = 1, 2,..., n} is a balanced set. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2053 / 2066
页数:14
相关论文
共 26 条
[1]  
[Anonymous], CAS PEST MAT
[2]   Embedding ladders and caterpillars into the hypercube [J].
Bezrukov, S ;
Monien, B ;
Unger, W ;
Wechsung, G .
DISCRETE APPLIED MATHEMATICS, 1998, 83 (1-3) :21-29
[3]  
BEZRUKOV S, 1996, EMBEDDING LADDERS CA
[4]   Embedding complete trees into the hypercube [J].
Bezrukov, SL .
DISCRETE APPLIED MATHEMATICS, 2001, 110 (2-3) :101-119
[5]  
BEZRUKOV SL, 1994, COMB PROB COMPUT, V3, P27
[6]   Optimal embeddings of odd ladders into a hypercube [J].
Caha, R ;
Koubek, V .
DISCRETE APPLIED MATHEMATICS, 2002, 116 (1-2) :73-102
[7]   Spanning regular caterpillars in hypercubes [J].
Caha, R ;
Koubek, V .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (03) :249-266
[8]   Optimal embeddings of generalized ladders into hypercubes [J].
Caha, R ;
Koubek, V .
DISCRETE MATHEMATICS, 2001, 233 (1-3) :65-83
[9]  
Dvorák T, 2003, DISCRETE MATH, V262, P121
[10]  
Dvorak T, 1997, J GRAPH THEOR, V24, P9, DOI 10.1002/(SICI)1097-0118(199701)24:1<9::AID-JGT2>3.0.CO