Despite advances in surgical management of fibrocontractive retinal disorders, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR) remain major causes of blindness and there is still considerable uncertainty about the origins and roles of the cell types involved. Muller cells and cells identified as retinal glia are consistently identified in epiretinal tissues from both types of disorders. However, their abundance relative to total cell populations is generally low, leaving their role in these disorders uncertain. Studies of Muller cell biology using tissue culture and animal models provide evidence of the remarkable capacity of this cell type for graded responses to environmental insult, the capacity to proliferate, translocate from the retina and alter phenotype and thus, functional characteristics. This review considers the potential roles of Muller cells in fibrocontractive retinal disorders and, in particular, evidence that Muller cells function as an effector cell type in traction retinal detachment associated with PVR and PDR. (C) 2004 Elsevier Ltd. All rights reserved.