DNA nanotechnology-empowered finite state machines

被引:7
作者
Cao, Shuting [1 ,2 ]
Wang, Fei [3 ,4 ]
Wang, Lihua [5 ,6 ]
Fan, Chunhai [3 ,4 ]
Li, Jiang [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, CAS Key Lab Interfacial Phys & Technol, Div Phys Biol, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Frontiers Sci Ctr Transformat Mol, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Natl Ctr Translat Med, Shanghai 200240, Peoples R China
[5] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Interdisciplinary Res Ctr,Zhangjiang Lab, Shanghai 201210, Peoples R China
[6] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, Shanghai 200127, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
IN-VIVO; COMPUTATION; ORIGAMI; LOGIC; NETWORK; PH; NANOSTRUCTURES; HEMAGGLUTININ; EXPRESSION; SIMILARITY;
D O I
10.1039/d2nh00060a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A finite state machine (FSM, or automaton) is an abstract machine that can switch among a finite number of states in response to temporally ordered inputs, which allows storage and processing of information in an order-sensitive manner. In recent decades, DNA molecules have been actively exploited to develop information storage and nanoengineering materials, which hold great promise for smart nanodevices and nanorobotics under the framework of FSM. In this review, we summarize recent progress in utilizing DNA self-assembly and DNA nanostructures to implement FSMs. We describe basic principles for representative DNA FSM prototypes and highlight their advantages and potential in diverse applications. The challenges in this field and future directions have also been discussed.
引用
收藏
页码:578 / 588
页数:11
相关论文
共 103 条
[1]   MOLECULAR COMPUTATION OF SOLUTIONS TO COMBINATORIAL PROBLEMS [J].
ADLEMAN, LM .
SCIENCE, 1994, 266 (5187) :1021-1024
[2]  
Amir Y, 2014, NAT NANOTECHNOL, V9, P353, DOI [10.1038/nnano.2014.58, 10.1038/NNANO.2014.58]
[3]   Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility [J].
Auvinen, Henni ;
Zhang, Hongbo ;
Nonappa ;
Kopilow, Alisa ;
Niemela, Elina H. ;
Nummelin, Sami ;
Correia, Alexandra ;
Santos, Helder A. ;
Linko, Veikko ;
Kostiainen, Mauri A. .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (18)
[4]   Programmed folding of DNA origami structures through single-molecule force control [J].
Bae, Wooli ;
Kim, Kipom ;
Min, Duyoung ;
Ryu, Je-Kyung ;
Hyeon, Changbong ;
Yoon, Tae-Young .
NATURE COMMUNICATIONS, 2014, 5
[5]   An information-bearing seed for nucleating algorithmic self-assembly [J].
Barish, Robert D. ;
Schulman, Rebecca ;
Rothemund, Paul W. K. ;
Winfree, Erik .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (15) :6054-6059
[6]   DNA nanomachines [J].
Bath, Jonathan ;
Turberfield, Andrew J. .
NATURE NANOTECHNOLOGY, 2007, 2 (05) :275-284
[7]   Programmable and autonomous computing machine made of biomolecules [J].
Benenson, Y ;
Paz-Elizur, T ;
Adar, R ;
Keinan, E ;
Livneh, Z ;
Shapiro, E .
NATURE, 2001, 414 (6862) :430-434
[8]   Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore [J].
Benner, Seico ;
Chen, Roger J. A. ;
Wilson, Noah A. ;
Abu-Shumays, Robin ;
Hurt, Nicholas ;
Lieberman, Kate R. ;
Deamer, David W. ;
Dunbar, William B. ;
Akeson, Mark .
NATURE NANOTECHNOLOGY, 2007, 2 (11) :718-724
[9]   A DNA ENZYME WITH MG2+-DEPENDENT RNA PHOSPHOESTERASE ACTIVITY [J].
BREAKER, RR ;
JOYCE, GF .
CHEMISTRY & BIOLOGY, 1995, 2 (10) :655-660
[10]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43