Logarithmic orbifold Euler numbers of surfaces with applications

被引:45
作者
Langer, A [1 ]
机构
[1] Inst Matemat UW, PL-02097 Warsaw, Poland
关键词
D O I
10.1112/S0024611502013874
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:358 / 396
页数:39
相关论文
共 34 条
[11]  
Kawamata Y., 1987, ADV STUDIES PURE MAT, V10, P283
[12]   A NUMERICAL CHARACTERIZATION OF BALL QUOTIENTS FOR NORMAL SURFACES WITH BRANCH LOCI [J].
KOBAYASHI, R ;
NAKAMURA, S ;
SAKAI, F .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1989, 65 (07) :238-241
[13]  
Kollar J., 1995, P S PURE MATH, V62, P221
[14]  
Kyoji Saito, 1980, J. Fac. Sci. Univ. Tokyo Sect. IA Math., V27, P265
[15]   Chern classes of reflexive sheaves on normal surfaces [J].
Langer, A .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (03) :591-614
[16]  
Langer A, 2000, J ALGEBRAIC GEOM, V9, P71
[17]   Adjoint linear systems on normal log surfaces [J].
Langer, A .
COMPOSITIO MATHEMATICA, 2001, 129 (01) :47-66
[18]   The Bogomolov-Miyaoka-Yau inequality for log canonical surfaces [J].
Langer, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :327-343
[19]  
LU S, 1965, MATH RES LETT, V2, P663
[20]   Generalisation of the Bogomolov-Miyaoka-Yau inequality to singular surfaces [J].
Megyesi, G .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 78 :241-282