CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

被引:10
作者
Bian, Jiang [1 ]
Xie, Mengjun [2 ]
Hudson, Teresa J. [3 ,5 ]
Eswaran, Hari [1 ,4 ]
Brochhausen, Mathias [1 ]
Hanna, Josh [6 ]
Hogan, William R. [7 ,8 ]
机构
[1] Univ Arkansas Med Sci, Div Biomed Informat, Little Rock, AR 72205 USA
[2] Univ Arkansas, Dept Comp Sci, Little Rock, AR 72204 USA
[3] Univ Arkansas Med Sci, Dept Psychiat & Behav Sci, Little Rock, AR 72205 USA
[4] Univ Arkansas Med Sci, Dept Obstet & Gynecol Res, Little Rock, AR 72205 USA
[5] Cent Arkansas Vet Healthcare Syst, HSR&D Ctr Mental Healthcare & Outcomes Res, Dept Vet Affairs, Little Rock, AR USA
[6] Univ Florida, Gainesville, FL 32610 USA
[7] Univ Florida, Dept Hlth Outcomes & Policy, Gainesville, FL 32610 USA
[8] Univ Florida, Clin & Translat Sci Inst, Gainesville, FL 32610 USA
来源
PLOS ONE | 2014年 / 9卷 / 11期
关键词
VISUALIZATION;
D O I
10.1371/journal.pone.0111928
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences - a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization.
引用
收藏
页数:8
相关论文
共 37 条
[1]  
Alsukhni M, 2012, 2012 IEEE 13TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P247, DOI 10.1109/IRI.2012.6303017
[2]  
Auber D., 2012, The Tulip 3 framework: A scalable software library for information visualization applications based on relational data
[3]  
Bastian M., 2009, INT AAAI C WEBLOGS S, P361, DOI [DOI 10.1609/ICWSM.V3I1.13937, 10.13140/2.1.1341.1520]
[4]  
Batagelj V, 2004, MATH VIS, P77
[5]  
Bian J, 2013, BIOINF BIOM BIBM 201, P9, DOI [10.1109/BIBM.2013.6732728, DOI 10.1109/BIBM.2013.6732728]
[6]   Social network analysis of biomedical research collaboration networks in a CTSA institution [J].
Bian, Jiang ;
Xie, Mengjun ;
Topaloglu, Umit ;
Hudson, Teresa ;
Eswaran, Hari ;
Hogan, William .
JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 52 :130-140
[7]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[8]   D3: Data-Driven Documents [J].
Bostock, Michael ;
Ogievetsky, Vadim ;
Heer, Jeffrey .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :2301-2309
[9]  
Csardi G., 2006, The igraph software package for complex network research (1.6.0) [Computer software]
[10]  
CTSA Consortium: Evaluation Key Function Committee, 2011, EV SOC NETW AN