共 69 条
Distinct Roles of Interferon Alpha and Beta in Controlling Chikungunya Virus Replication and Modulating Neutrophil-Mediated Inflammation
被引:51
作者:
Cook, Lindsey E.
[1
]
Locke, Marissa C.
[1
]
Young, Alissa R.
[2
]
Monte, Kristen
[3
]
Hedberg, Matthew L.
[1
]
Shimak, Raeann M.
[1
]
Sheehan, Kathleen C. F.
[1
,4
]
Veis, Deborah J.
[1
,3
,5
]
Diamond, Michael S.
[1
,2
,3
,4
]
Lenschowa, Deborah J.
[1
,3
]
机构:
[1] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63130 USA
[2] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO USA
[3] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Andrew M & Jane M Bursky Ctr Human Immunol & Immu, St Louis, MO USA
[5] Shriners Hosp Children St Louis, St Louis, MO USA
基金:
美国国家卫生研究院;
关键词:
chikungunya virus;
host-pathogen interactions;
innate immunity;
interferons;
I INTERFERONS;
POSITIVE FEEDBACK;
GENE-EXPRESSION;
DENDRITIC CELLS;
MOUSE MODEL;
INFECTION;
INDUCTION;
IRF-3;
PATHOGENESIS;
RECRUITMENT;
D O I:
10.1128/JVI.00841-19
中图分类号:
Q93 [微生物学];
学科分类号:
071005 ;
100705 ;
摘要:
Type I interferons (IFNs) are key mediators of the innate immune response. Although members of this family of cytokines signal through a single shared receptor, biochemical and functional variation exists in response to different IFN subtypes. While previous work has demonstrated that type I IFNs are essential to control infection by chikungunya virus (CHIKV), a globally emerging alphavirus, the contributions of individual IFN subtypes remain undefined. To address this question, we evaluated CHIKV pathogenesis in mice lacking IFN-beta (IFN-beta knockout [IFN-beta-KO] mice or mice treated with an IFN-beta-blocking antibody) or IFN-alpha (IFN regulatory factor 7 knockout [IRF7-KO] mice or mice treated with a pan-IFN-alpha-blocking antibody). Mice lacking either IFN-alpha or IFN-beta developed severe clinical disease following infection with CHIKV, with a marked increase in foot swelling compared to wild-type mice. Virological analysis revealed that mice lacking IFN-alpha sustained elevated infection in the infected ankle and in distant tissues. In contrast, IFN-beta-KO mice displayed minimal differences in viral burdens within the ankle or at distal sites and instead had an altered cellular immune response. Mice lacking IFN-beta had increased neutrophil infiltration into musculoskeletal tissues, and depletion of neutrophils in IFN-beta-KO but not IRF7-KO mice mitigated musculoskeletal disease caused by CHIKV. Our findings suggest disparate roles for the IFN subtypes during CHIKV infection, with IFN-alpha limiting early viral replication and dissemination and IFN-beta modulating neutrophil-mediated inflammation. IMPORTANCE Type I interferons (IFNs) possess a range of biological activity and protect against a number of viruses, including alphaviruses. Despite signaling through a shared receptor, there are established biochemical and functional differences among the IFN subtypes. The significance of our research is in demonstrating that IFN-alpha and IFN-beta both have protective roles during acute chikungunya virus (CHIKV) infection but do so by distinct mechanisms. IFN-alpha limits CHIKV replication and dissemination, whereas IFN-beta protects from CHIKV pathogenesis by limiting inflammation mediated by neutrophils. Our findings support the premise that the IFN subtypes have distinct biological activities in the antiviral response.
引用
收藏
页数:16
相关论文