Estimation in partially linear models with missing responses at random

被引:69
作者
Wang, Qihua [1 ]
Sun, Zhihua
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
imputation estimator; regression surrogate estimator; inverse marginal probability weighted estimator; asymptotic normality;
D O I
10.1016/j.jmva.2006.10.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A partially linear model is considered when the responses are missing at random. Imputation, semiparametric regression surrogate and inverse marginal probability weighted approaches are developed to estimate the regression coefficients and the nonparametric function, respectively. All the proposed estimators for the regression coefficients are shown to be asymptotically normal, and the estimators for the nonparametric function are proved to converge at an optimal rate. A simulation study is conducted to compare the finite sample behavior of the proposed estimators. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1470 / 1493
页数:24
相关论文
共 24 条
[1]   SEMIPARAMETRIC ESTIMATION OF CENSORED SELECTION MODELS WITH A NONPARAMETRIC SELECTION MECHANISM [J].
AHN, H ;
POWELL, JL .
JOURNAL OF ECONOMETRICS, 1993, 58 (1-2) :3-29
[2]   CONVERGENCE-RATES FOR PARAMETRIC COMPONENTS IN A PARTLY LINEAR-MODEL [J].
CHEN, H .
ANNALS OF STATISTICS, 1988, 16 (01) :136-146
[4]   SPLINE-BASED TESTS IN SURVIVAL ANALYSIS [J].
GRAY, RJ .
BIOMETRICS, 1994, 50 (03) :640-652
[5]  
Green P. J., 1993, Nonparametric regression and generalized linear models: a roughness penalty approach
[6]  
Hardle W., 2000, Partially Linear Models, DOI 10.1007/978-3-642-57700-0
[7]  
HEALY M., 1956, Applied Statistics, V5, P203, DOI 10.2307/2985421
[8]  
HECKMAN NE, 1986, J ROY STAT SOC B MET, V48, P244
[9]  
Hong SY, 1999, STAT SINICA, V9, P775
[10]   Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data [J].
Hu, ZH ;
Wang, NY ;
Carroll, RJ .
BIOMETRIKA, 2004, 91 (02) :251-262