Existence and nonexistence of solutions for the heat equation with a superlinear source term

被引:35
作者
Fujishima, Yohei [1 ]
Ioku, Norisuke [2 ]
机构
[1] Shizuoka Univ, Fac Engn, Dept Math & Syst Engn, 3-5-1 Johoku, Hamamatsu, Shizuoka 4338561, Japan
[2] Ehime Univ, Grad Sch Sci & Engn, Matsuyama, Ehime 7908577, Japan
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 118卷
关键词
Nonlinear heat equation; Scale invariance; Singular initial data; Existence and nonexistence; LINEAR PARABOLIC EQUATIONS; BLOW-UP; GLOBAL-SOLUTIONS; LOCAL EXISTENCE; WELL-POSEDNESS; CAUCHY-PROBLEM; UNIQUENESS; SUPERSOLUTIONS; NONUNIQUENESS;
D O I
10.1016/j.matpur.2018.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a classification theory for the existence and non-existence of local in time solutions for initial value problems for nonlinear heat equations. By focusing on some quasi-scaling property and its invariant integral, we reveal the explicit threshold integrability of initial data that classifies the existence and nonexistence of solutions. Typical nonlinear terms, for instance polynomial type, exponential type and their sums, products and compositions can be treated as applications. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:128 / 158
页数:31
相关论文
共 39 条
[1]  
Andreucci D., 1991, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V18, P363
[2]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[3]   Linear parabolic equations in locally uniform spaces [J].
Arrieta, JM ;
Rodriguez-Bernal, A ;
Cholewa, JW ;
Dlotko, T .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (02) :253-293
[4]   A NECESSARY AND SUFFICIENT CONDITIONS FOR EXISTENCE OF NON NEGATIVE SOLUTIONS FOR SOME SEMILINEAR NON MONOTONE EQUATIONS [J].
BARAS, P ;
PIERRE, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (03) :185-212
[5]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[6]  
Cazenave T., ARXIV170601403
[7]   Stable solutions of -Δu=f(u) in RN [J].
Dupaigne, L. ;
Farina, A. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (04) :855-882
[8]  
Fila M, 2006, DISCRETE CONT DYN S, V14, P63
[9]   BLOW-UP SET FOR A SUPERLINEAR HEAT EQUATION AND POINTEDNESS OF THE INITIAL DATA [J].
Fujishima, Yohei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) :4617-4645
[10]   ON UNIQUENESS AND NON-UNIQUENESS OF SOLUTIONS OF SOLUTIONS OF INITIAL VALUE PROBLEMS FOR SOME QUASI-LINEAR PARABOLIC EQUATIONS [J].
FUJITA, H ;
WATANABE, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1968, 21 (06) :631-&