Simulation of Tantalum Nanocrystals Under Shock-Wave Loading: Dislocations and Twinning

被引:15
作者
Tramontina, D. R. [1 ,2 ,3 ]
Hahn, E. N. [4 ]
Meyers, M. A. [4 ]
Bringa, E. M. [1 ,3 ]
机构
[1] Natl Univ Cuyo, Fac Ciencias Exactas & Nat, M5502JMA, Mendoza, Argentina
[2] Natl Univ Cuyo, Engn Fac, M5502BZG, Mendoza, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[4] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
SHOCK COMPRESSION OF CONDENSED MATTER - 2015 | 2017年 / 1793卷
关键词
MOLECULAR-DYNAMICS SIMULATIONS; COMPRESSION;
D O I
10.1063/1.4971590
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We simulate strong shock waves in nanocrystalline tantalum using atomistic molecular dynamics simulations, for particle velocities in the range 0.35-2.0 km s(-1), which induce pressures in the range 20-195 GPa. Our simulations explore strain rates in the range 108 s(-1) - 1010 s(-1), and lead to a peak strength in the range 3-15 GPa. Nanocrystalline tantalum exposed to strong shock waves demonstrates deformation enabled by concomitant dislocations, twinning, and grain boundary activity at a variety of particle velocities. Twinning is observed for a mean grain size of 7 nm, starting at around 32 GPa, in disagreement with models which predict a Hall-Petch behavior for twinning, i.e. a twinning stress scaling with grain size d as d(-0.5), and supporting the presence of an inverse Hall-Petch effect for twinning at small grain sizes.
引用
收藏
页数:6
相关论文
共 20 条
[11]   Laser compression of monocrystalline tantalum [J].
Lu, C. H. ;
Remington, B. A. ;
Maddox, B. R. ;
Kad, B. ;
Park, H. S. ;
Prisbrey, S. T. ;
Meyers, M. A. .
ACTA MATERIALIA, 2012, 60 (19) :6601-6620
[12]   Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter [J].
Milathianaki, D. ;
Boutet, S. ;
Williams, G. J. ;
Higginbotham, A. ;
Ratner, D. ;
Gleason, A. E. ;
Messerschmidt, M. ;
Seibert, M. M. ;
Swift, D. C. ;
Hering, P. ;
Robinson, J. ;
White, W. E. ;
Wark, J. S. .
SCIENCE, 2013, 342 (6155) :220-223
[13]   Shock-induced deformation twinning in tantalum [J].
Murr, LE ;
Meyers, MA ;
Niou, CS ;
Chen, YJ ;
Pappu, S ;
Kennedy, C .
ACTA MATERIALIA, 1997, 45 (01) :157-175
[14]   Grain-Size-Independent Plastic Flow at Ultrahigh Pressures and Strain Rates [J].
Park, H. -S. ;
Rudd, R. E. ;
Cavallo, R. M. ;
Barton, N. R. ;
Arsenlis, A. ;
Belof, J. L. ;
Blobaum, K. J. M. ;
El-dasher, B. S. ;
Florando, J. N. ;
Huntington, C. M. ;
Maddox, B. R. ;
May, M. J. ;
Plechaty, C. ;
Prisbrey, S. T. ;
Remington, B. A. ;
Wallace, R. J. ;
Wehrenberg, C. E. ;
Wilson, M. J. ;
Comley, A. J. ;
Giraldez, E. ;
Nikroo, A. ;
Farrell, M. ;
Randall, G. ;
Gray, G. T., III .
PHYSICAL REVIEW LETTERS, 2015, 114 (06)
[15]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[16]   Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations [J].
Ravelo, R. ;
Germann, T. C. ;
Guerrero, O. ;
An, Q. ;
Holian, B. L. .
PHYSICAL REVIEW B, 2013, 88 (13)
[17]   Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J].
Stukowski, Alexander ;
Albe, Karsten .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2010, 18 (08)
[19]   Inverse Hall-Petch relationship in nanocrystalline tantalum [J].
Tang, Yizhe ;
Bringa, Eduardo M. ;
Meyers, Marc A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 580 :414-426
[20]   Molecular dynamics simulations of shock-induced plasticity in tantalum [J].
Tramontina, Diego ;
Erhart, Paul ;
Germann, Timothy ;
Hawreliak, James ;
Higginbotham, Andrew ;
Park, Nigel ;
Ravelo, Ramon ;
Stukowski, Alexander ;
Suggit, Mathew ;
Tang, Yizhe ;
Wark, Justin ;
Bringa, Eduardo .
HIGH ENERGY DENSITY PHYSICS, 2014, 10 :9-15