Simulation of Tantalum Nanocrystals Under Shock-Wave Loading: Dislocations and Twinning

被引:15
作者
Tramontina, D. R. [1 ,2 ,3 ]
Hahn, E. N. [4 ]
Meyers, M. A. [4 ]
Bringa, E. M. [1 ,3 ]
机构
[1] Natl Univ Cuyo, Fac Ciencias Exactas & Nat, M5502JMA, Mendoza, Argentina
[2] Natl Univ Cuyo, Engn Fac, M5502BZG, Mendoza, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[4] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
SHOCK COMPRESSION OF CONDENSED MATTER - 2015 | 2017年 / 1793卷
关键词
MOLECULAR-DYNAMICS SIMULATIONS; COMPRESSION;
D O I
10.1063/1.4971590
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We simulate strong shock waves in nanocrystalline tantalum using atomistic molecular dynamics simulations, for particle velocities in the range 0.35-2.0 km s(-1), which induce pressures in the range 20-195 GPa. Our simulations explore strain rates in the range 108 s(-1) - 1010 s(-1), and lead to a peak strength in the range 3-15 GPa. Nanocrystalline tantalum exposed to strong shock waves demonstrates deformation enabled by concomitant dislocations, twinning, and grain boundary activity at a variety of particle velocities. Twinning is observed for a mean grain size of 7 nm, starting at around 32 GPa, in disagreement with models which predict a Hall-Petch behavior for twinning, i.e. a twinning stress scaling with grain size d as d(-0.5), and supporting the presence of an inverse Hall-Petch effect for twinning at small grain sizes.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Ultrahigh strength in nanocrystalline materials under shock loading [J].
Bringa, EM ;
Caro, A ;
Wang, YM ;
Victoria, M ;
McNaney, JM ;
Remington, BA ;
Smith, RF ;
Torralva, BR ;
Van Swygenhoven, H .
SCIENCE, 2005, 309 (5742) :1838-1841
[2]   High-Pressure-High-Temperature Polymorphism in Ta: Resolving an Ongoing Experimental Controversy [J].
Burakovsky, L. ;
Chen, S. P. ;
Preston, D. L. ;
Belonoshko, A. B. ;
Rosengren, A. ;
Mikhaylushkin, A. S. ;
Simak, S. I. ;
Moriarty, J. A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[3]   Effect of Crystalline Structure on Intergranular Failure During Shock Loading [J].
Escobedo, J. P. ;
Cerreta, E. K. ;
Dennis-Koller, D. .
JOM, 2014, 66 (01) :156-164
[4]   Analysis of deformation twinning in tantalum single crystals under shock loading conditions [J].
Florando, Jeffrey N. ;
Barton, Nathan R. ;
El-Dasher, Bassem S. ;
McNaney, James M. ;
Kumar, Mukul .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (08)
[5]   Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron [J].
Gunkelmann, Nina ;
Tramontina, Diego R. ;
Bringa, Eduardo M. ;
Urbassek, Herbert M. .
NEW JOURNAL OF PHYSICS, 2014, 16
[6]  
Hahn E. N., 2015, AIP C P UNPUB
[7]   Grain-size dependent mechanical behavior of nanocrystalline metals [J].
Hahn, Eric N. ;
Meyers, Marc A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 646 :101-134
[8]   Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals [J].
Jarmakani, H. N. ;
Bringa, E. M. ;
Erhart, P. ;
Remington, B. A. ;
Wang, Y. M. ;
Vo, N. Q. ;
Meyers, M. A. .
ACTA MATERIALIA, 2008, 56 (19) :5584-5604
[9]   Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L [J].
Kadau, Kai ;
Germann, Timothy C. ;
Lomdahl, Peter S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (12) :1755-1761
[10]   Laser compression of nanocrystalline tantalum [J].
Lu, C. H. ;
Remington, B. A. ;
Maddox, B. R. ;
Kad, B. ;
Park, H. S. ;
Kawasaki, M. ;
Langdon, T. G. ;
Meyers, M. A. .
ACTA MATERIALIA, 2013, 61 (20) :7767-7780