Simulation of Tantalum Nanocrystals Under Shock-Wave Loading: Dislocations and Twinning

被引:15
作者
Tramontina, D. R. [1 ,2 ,3 ]
Hahn, E. N. [4 ]
Meyers, M. A. [4 ]
Bringa, E. M. [1 ,3 ]
机构
[1] Natl Univ Cuyo, Fac Ciencias Exactas & Nat, M5502JMA, Mendoza, Argentina
[2] Natl Univ Cuyo, Engn Fac, M5502BZG, Mendoza, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[4] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
SHOCK COMPRESSION OF CONDENSED MATTER - 2015 | 2017年 / 1793卷
关键词
MOLECULAR-DYNAMICS SIMULATIONS; COMPRESSION;
D O I
10.1063/1.4971590
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We simulate strong shock waves in nanocrystalline tantalum using atomistic molecular dynamics simulations, for particle velocities in the range 0.35-2.0 km s(-1), which induce pressures in the range 20-195 GPa. Our simulations explore strain rates in the range 108 s(-1) - 1010 s(-1), and lead to a peak strength in the range 3-15 GPa. Nanocrystalline tantalum exposed to strong shock waves demonstrates deformation enabled by concomitant dislocations, twinning, and grain boundary activity at a variety of particle velocities. Twinning is observed for a mean grain size of 7 nm, starting at around 32 GPa, in disagreement with models which predict a Hall-Petch behavior for twinning, i.e. a twinning stress scaling with grain size d as d(-0.5), and supporting the presence of an inverse Hall-Petch effect for twinning at small grain sizes.
引用
收藏
页数:6
相关论文
共 20 条
  • [1] Ultrahigh strength in nanocrystalline materials under shock loading
    Bringa, EM
    Caro, A
    Wang, YM
    Victoria, M
    McNaney, JM
    Remington, BA
    Smith, RF
    Torralva, BR
    Van Swygenhoven, H
    [J]. SCIENCE, 2005, 309 (5742) : 1838 - 1841
  • [2] High-Pressure-High-Temperature Polymorphism in Ta: Resolving an Ongoing Experimental Controversy
    Burakovsky, L.
    Chen, S. P.
    Preston, D. L.
    Belonoshko, A. B.
    Rosengren, A.
    Mikhaylushkin, A. S.
    Simak, S. I.
    Moriarty, J. A.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [3] Effect of Crystalline Structure on Intergranular Failure During Shock Loading
    Escobedo, J. P.
    Cerreta, E. K.
    Dennis-Koller, D.
    [J]. JOM, 2014, 66 (01) : 156 - 164
  • [4] Analysis of deformation twinning in tantalum single crystals under shock loading conditions
    Florando, Jeffrey N.
    Barton, Nathan R.
    El-Dasher, Bassem S.
    McNaney, James M.
    Kumar, Mukul
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (08)
  • [5] Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron
    Gunkelmann, Nina
    Tramontina, Diego R.
    Bringa, Eduardo M.
    Urbassek, Herbert M.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [6] Hahn E. N., 2015, AIP C P UNPUB
  • [7] Grain-size dependent mechanical behavior of nanocrystalline metals
    Hahn, Eric N.
    Meyers, Marc A.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 646 : 101 - 134
  • [8] Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals
    Jarmakani, H. N.
    Bringa, E. M.
    Erhart, P.
    Remington, B. A.
    Wang, Y. M.
    Vo, N. Q.
    Meyers, M. A.
    [J]. ACTA MATERIALIA, 2008, 56 (19) : 5584 - 5604
  • [9] Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L
    Kadau, Kai
    Germann, Timothy C.
    Lomdahl, Peter S.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (12): : 1755 - 1761
  • [10] Laser compression of nanocrystalline tantalum
    Lu, C. H.
    Remington, B. A.
    Maddox, B. R.
    Kad, B.
    Park, H. S.
    Kawasaki, M.
    Langdon, T. G.
    Meyers, M. A.
    [J]. ACTA MATERIALIA, 2013, 61 (20) : 7767 - 7780