Trefftz methods with cracklets and their relation to BEM and MFS
被引:10
作者:
Alves, Carlos J. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, PortugalUniv Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Alves, Carlos J. S.
[1
]
Martins, Nuno F. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Math, P-2829516 Quinta Da Torre, Caparica, PortugalUniv Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Martins, Nuno F. M.
[2
]
Valtchev, Svilen S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
ESTG Polytech Inst Leiria, P-2411901 Leiria, PortugalUniv Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Valtchev, Svilen S.
[1
,3
]
机构:
[1] Univ Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Math, P-2829516 Quinta Da Torre, Caparica, Portugal
[3] ESTG Polytech Inst Leiria, P-2411901 Leiria, Portugal
Trefftz method;
Cracklets;
Boundary element method;
Method of fundamental solutions;
BOUNDARY-VALUE-PROBLEMS;
FUNDAMENTAL-SOLUTIONS;
DIFFUSION-PROBLEMS;
HELMHOLTZ;
DOMAIN;
D O I:
10.1016/j.enganabound.2018.06.021
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
In this paper we consider Trefftz methods which are based on functions defined by single layer or double layer potentials, integrals of the fundamental solution, or their normal derivative, on cracks. These functions are called cracklets, and satisfy the partial differential equation, as long as the crack support is not placed inside the domain. A boundary element method (BEM) interpretation is to consider these cracks as elements of the original boundary, in a direct BEM approach, or elements of an artificial boundary, in an indirect BEM approach. In this paper we consider the cracklets just as basis functions in Trefftz methods, as the method of fundamental solutions (MFS). We focus on the 2D Laplace equation, and establish some comparisons and connections between these methods with cracklets and standard approaches like the BEM, indirect BEM, and the MFS. Namely, we propose the enrichment of the MFS basis with the cracklets. Several numerical simulations are presented to test the performance of the methods, in particular comparing the results with the MFS and the BEM.
机构:
Univ Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Univ Lisbon, Dept Math, IST, P-1049001 Lisbon, PortugalUniv Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Alves, Carlos J. S.
;
Valtchev, Svilen S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Polytech Inst Leiria, Dept Math, ESTG, P-2411901 Leiria, PortugalUniv Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
机构:
Univ Tecn Lisboa, CEMAT IST, P-1049001 Lisbon, Portugal
Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, PortugalUniv Tecn Lisboa, CEMAT IST, P-1049001 Lisbon, Portugal
Alves, Carlos J. S.
;
Martins, Nuno F. M.
论文数: 0引用数: 0
h-index: 0
机构:
NULisbon, CEMAT IST, P-2829516 Quinta Da Torre, Caparica, Portugal
NULisbon, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, PortugalUniv Tecn Lisboa, CEMAT IST, P-1049001 Lisbon, Portugal
机构:
Taiyuan Univ Technol, Coll Math, Shanxi, Peoples R China
Univ So Mississippi, Dept Math, Hattiesburg, MS 39406 USATaiyuan Univ Technol, Coll Math, Shanxi, Peoples R China
Chen, C. S.
;
Karageorghis, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, CyprusTaiyuan Univ Technol, Coll Math, Shanxi, Peoples R China
Karageorghis, A.
;
Li, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Shanxi, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Shanxi, Peoples R China
机构:
Univ Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Univ Lisbon, Dept Math, IST, P-1049001 Lisbon, PortugalUniv Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Alves, Carlos J. S.
;
Valtchev, Svilen S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Polytech Inst Leiria, Dept Math, ESTG, P-2411901 Leiria, PortugalUniv Lisbon, CEMAT IST, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
机构:
Univ Tecn Lisboa, CEMAT IST, P-1049001 Lisbon, Portugal
Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, PortugalUniv Tecn Lisboa, CEMAT IST, P-1049001 Lisbon, Portugal
Alves, Carlos J. S.
;
Martins, Nuno F. M.
论文数: 0引用数: 0
h-index: 0
机构:
NULisbon, CEMAT IST, P-2829516 Quinta Da Torre, Caparica, Portugal
NULisbon, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, PortugalUniv Tecn Lisboa, CEMAT IST, P-1049001 Lisbon, Portugal
机构:
Taiyuan Univ Technol, Coll Math, Shanxi, Peoples R China
Univ So Mississippi, Dept Math, Hattiesburg, MS 39406 USATaiyuan Univ Technol, Coll Math, Shanxi, Peoples R China
Chen, C. S.
;
Karageorghis, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, CyprusTaiyuan Univ Technol, Coll Math, Shanxi, Peoples R China
Karageorghis, A.
;
Li, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Shanxi, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Shanxi, Peoples R China