A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro

被引:155
作者
Ballini, Marco [2 ]
Mueller, Jan [1 ]
Livi, Paolo [1 ]
Chen, Yihui [1 ]
Frey, Urs [2 ]
Stettler, Alexander [1 ]
Shadmani, Amir [1 ]
Viswam, Vijay [1 ]
Jones, Ian Lloyd [1 ]
Jaeckel, David [1 ]
Radivojevic, Milos [1 ]
Lewandowska, Marta K. [1 ]
Gong, Wei [1 ]
Fiscella, Michele [1 ]
Bakkum, Douglas J. [1 ]
Heer, Flavio [2 ]
Hierlemann, Andreas [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn D BSSE, CH-4058 Basel, Switzerland
[2] Swiss Fed Inst Technol, D BSSE, CH-4058 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
Extracellular recording and stimulation; high channel count; low noise; low power; microelectrode array (MEA); multirate switched capacitor filter; neural interface; offset compensation; single-slope ADC; switch matrix; INTERFACE; SYSTEM; NOISE; AMPLIFIER; CULTURES;
D O I
10.1109/JSSC.2014.2359219
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 x 2.10 mm(2)) with sub-cellular spatial resolution (pitch of 17.5 mu m). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 mu V-rms in the action-potential band (300 Hz-10 kHz) and 5.4 mu V-rms in the local-field-potential band (1 Hz-300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures.
引用
收藏
页码:2705 / 2719
页数:15
相关论文
共 40 条
  • [1] Brain-Silicon Interface for High-Resolution in vitro Neural Recording
    Aziz, Joseph N. Y.
    Genov, Roman
    Bardakjian, Berj L.
    Derchansky, Miron
    Carlen, Peter L.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2007, 1 (01) : 56 - 62
  • [2] 256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes
    Aziz, Joseph N. Y.
    Abdelhalim, Karim
    Shulyzki, Ruslana
    Genov, Roman
    Bardakjian, Berj L.
    Derchansky, Miron
    Serletis, Demitre
    Carlen, Peter L.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (03) : 995 - 1005
  • [3] Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites
    Bakkum, Douglas J.
    Frey, Urs
    Radivojevic, Milos
    Russell, Thomas L.
    Mueller, Jan
    Fiscella, Michele
    Takahashi, Hirokazu
    Hierlemann, Andreas
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [4] Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks
    Berdondini, Luca
    Imfeld, Kilian
    Maccione, Alessandro
    Tedesco, Mariateresa
    Neukom, Simon
    Koudelka-Hep, Milena
    Martinoia, Sergio
    [J]. LAB ON A CHIP, 2009, 9 (18) : 2644 - 2651
  • [5] A 128x128 CMOS biosensor array for extracellular recording of neural activity
    Eversmann, B
    Jenkner, M
    Hofmann, F
    Paulus, C
    Brederlow, R
    Holzapfl, B
    Fromherz, P
    Merz, M
    Brenner, M
    Schreiter, M
    Gabl, R
    Plehnert, K
    Steinhauser, M
    Eckstein, G
    Schmitt-Landsiedel, D
    Thewes, R
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (12) : 2306 - 2317
  • [6] Eversmann B., 2011, 37th European Solid State Circuits Conference (ESSCIRC 2011), P211, DOI 10.1109/ESSCIRC.2011.6044902
  • [7] Figueiredo P. M., 2004, P IEEE INT S CIRC SY, V1, pI
  • [8] Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection
    Fiscella, Michele
    Farrow, Karl
    Jones, Ian L.
    Jaeckel, David
    Mueller, Jan
    Frey, Urs
    Bakkum, Douglas J.
    Hantz, Peter
    Roska, Botond
    Hierlemann, Andreas
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2012, 211 (01) : 103 - 113
  • [9] Impedance characterization and modeling of electrodes for biomedical applications
    Franks, W
    Schenker, I
    Schmutz, P
    Hierlemann, A
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (07) : 1295 - 1302
  • [10] Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices
    Frey, U.
    Egert, U.
    Heer, F.
    Hafizovic, S.
    Hierlemann, A.
    [J]. BIOSENSORS & BIOELECTRONICS, 2009, 24 (07) : 2191 - 2198