Some diffusive capillary models of Korteweg type

被引:93
作者
Bresch, D
Desjardins, B
机构
[1] Imag Lab Grenoble, LMC, UMR5223, F-38041 Grenoble, France
[2] CEA, DIF, F-91680 Bruyeres Le Chatel, France
[3] DMA, ENS, F-75230 Paris, France
来源
COMPTES RENDUS MECANIQUE | 2004年 / 332卷 / 11期
关键词
computational fluid mechanics; diffuse interface models; Korteweg models; energy estimates; compressible flows;
D O I
10.1016/j.crme.2004.07.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Some diffusive capillary models of Korteweg type. The purpose of this Note is to propose new diffusive capillary models of Korteweg type and discuss their mathematical properties. More precisely, we introduce viscous models which provide some additional information on the behavior of the density close to vacuum. We actually prove that if some compatibility conditions between diffusion and capillarity are satisfied, some extra regularity information on a quantity involving the density is available. We obtain a non-trivial equality deduced from the special structure of the momentum equation. This Note generalizes to some extent the authors' previous works on the Korteweg model (with constant capillary coefficient) and on the shallow water equation. To cite this article: D. Bresch, B. Desjardins, C. R. Mecanique 332 (2004). (C) 2004 Academie des sciences. Publie par Elsevier SAS. Tons droits reserves.
引用
收藏
页码:881 / 886
页数:6
相关论文
共 11 条
[1]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[2]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[3]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[4]   Some new Kazhikhov-Smagulov type systems: pollutant spread and low Mach number combustion models [J].
Bresch, D ;
Essoufi, EH ;
Sy, M .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (11) :973-978
[5]  
BRESCH D, 2004, IN PRESS ANN IHP
[6]   A review of dispersive limits of (non)linear Schrodinger-type equations [J].
Gasser, I ;
Lin, CK ;
Markowich, PA .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (04) :501-529
[7]  
GENT PR, 1993, J ATMOS SCI, V50, P1323, DOI 10.1175/1520-0469(1993)050<1323:TECSWE>2.0.CO
[8]  
2
[9]  
Gerbeau JF, 2001, DISCRETE CONT DYN-B, V1, P89
[10]  
Korteweg DJ., 1901, ARCH NEERLANDAISES 2, VII, P1