On a Schrodinger equation with periodic potential and spectrum point zero

被引:110
作者
Willem, M [1 ]
Zou, WM
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
[2] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Schrodinger equation; continuous spectrum; monotonicity; weak link;
D O I
10.1512/iumj.2003.52.2273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a nonlinear Schrodinger equation with periodic potential. We assume that zero is an end point of the continuous spectrum of the Schrodinger operator. We establish some existence results of the homoclinic orbits for weak superlinear cases. To this purpose, we develop new linking theorems in Banach Spaces which provide bounded Palais-Smale sequences.
引用
收藏
页码:109 / 132
页数:24
相关论文
共 21 条
[1]   EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE LINEAR PART [J].
ALAMA, S ;
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :89-115
[2]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[5]   Homoclinic solutions of an infinite-dimensional Hamiltonian system [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :289-310
[6]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[7]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186
[8]  
COTIZELATI V, 1992, COMMUN PUR APPL MATH, V45, P1217
[9]   Homoclinic orbits of a Hamiltonian system [J].
Ding, YH ;
Willem, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05) :759-778
[10]   SOLUTIONS IN SPECTRAL GAPS FOR A NONLINEAR EQUATION OF SCHRODINGER TYPE [J].
JEANJEAN, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (01) :53-80