K-theory of quasicrystals, gap labelling: the octagonal lattice

被引:16
作者
Bellissard, J
Contensou, E
Legrand, A
机构
[1] Univ Toulouse 3, Inst Univ France, F-31062 Toulouse 4, France
[2] Univ Toulouse 3, Inst Rech Syst Atom & Mol Complexes, F-31062 Toulouse, France
[3] Univ Toulouse 3, CNRS, UMR 8850, Lab Math Emile Picard, F-31062 Toulouse 4, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 02期
关键词
D O I
10.1016/S0764-4442(97)89470-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the C-*-algebra of a quasicrystal constructed by the strip and projection method is Morita-equivalent to a crossed product. Its K-theory is thus obtained as limit of the Kasparov spectral sequence. When the quasicrystal is 2-dimensional, the spectral sequence degenerates and leads to the gap labelling for rite octagonal quasicrystal.
引用
收藏
页码:197 / 200
页数:4
相关论文
共 11 条
[1]  
BELLISSARD J, 1992, GAP LABELLING THEORE
[2]  
BELLISSARD J, 1997, UNPUB K THEORY QUASI
[3]  
BELLISSARD J, 1986, LECTURE NOTES PHYSIC, V257, P99
[4]  
Bratteli O., 1974, Journal of Functional Analysis, V16, P192, DOI 10.1016/0022-1236(74)90063-9
[5]  
Contensou E, 1997, CR ACAD SCI I-MATH, V324, P293
[6]   EQUIVARIANT KK-THEORY AND THE NOVIKOV-CONJECTURE [J].
KASPAROV, GG .
INVENTIONES MATHEMATICAE, 1988, 91 (01) :147-201
[7]   QUASI-PERIODIC PATTERNS AND ICOSAHEDRAL SYMMETRY [J].
KATZ, A ;
DUNEAU, M .
JOURNAL DE PHYSIQUE, 1986, 47 (02) :181-196
[8]  
MUHLY PS, 1987, J OPERAT THEOR, V17, P3
[9]  
Renault J., 1980, LECT NOTES MATH, V793
[10]  
RIEFFEL MA, 1982, P SYMP PURE MATH, V38, P299