On systems of elliptic equations involving subcritical or critical Sobolev exponents

被引:238
作者
Alves, CO [1 ]
de Morais, DC [1 ]
Souto, MAS [1 ]
机构
[1] Univ Fed Paraiba, Ctr Ciencias & Tecnol, Dept Matemat & Estat, BR-58109970 Campina Grande, PB, Brazil
关键词
critical Sobolev exponents; Palais-Smale condition; mountain pass theorem;
D O I
10.1016/S0362-546X(99)00121-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:771 / 787
页数:17
相关论文
共 12 条
[1]  
AZORERO JPG, 1987, COMMUN PART DIFF EQ, V12, P1389
[2]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
BREZIS H, 1986, P SYMP PURE MATH, V45, P165
[6]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[7]  
Kavian O., 1993, Introduction a la theorie des points critiques et applications aux problemes elliptiques, Mathematiques and Applications
[8]  
Mawhin J., 1989, CRITICAL POINT THEOR
[9]  
Pohozaev S. I., 1965, SOV MATH DOKL, V6, P1408
[10]  
Struwe M., 1990, Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems