The anode region of electric arcs: a survey

被引:111
作者
Heberlein, J. [1 ]
Mentel, J. [2 ]
Pfender, E. [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
[2] Ruhr Univ Bochum, Fak Electrotech & Informat Tech, D-44801 Bochum, Germany
基金
美国国家科学基金会;
关键词
HIGH-INTENSITY ARCS; DC PLASMA TORCH; THEORIE DES ANODENFALLS; BURNING ARGON ARCS; BOUNDARY-LAYER; HEAT-TRANSFER; CONTRACTION REGION; SUPERIMPOSED FLOW; SPRAY TORCH; CROSS-FLOW;
D O I
10.1088/0022-3727/43/2/023001
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electric arc anodes frequently determine functional performance and lifetime of a number of arcing devices, ranging from discharge lamps to plasma spray torches. While there have been numerous studies of the anode region of electric arcs, our understanding of the detailed physical processes is still limited. The reason for this lack of detailed knowledge is that numerous factors influence the arc-anode interaction, and that the plasma-solid interface in high intensity arcs is in general not accessible to diagnostics and one has to rely on indirect measurements. Throughout this survey, the emphasis will be on high intensity arc anodes, i.e. on plasmas with temperatures of more than 10 000K and electron densities exceeding 10(22) m(-3) outside the boundary layer, and heat fluxes exceeding 10(7) W m(-2). The plasma parameters in the boundary layer as obtained with different techniques by a number of investigators for a variety of conditions are presented, and the effect of macroscopic flow conditions is discussed. Experimental and modelling results are presented. A brief comparison with low current arcs is also given, and the areas that need further research are highlighted.
引用
收藏
页数:31
相关论文
共 109 条
[1]   Mathematical modeling of silica anode decomposition [J].
Addona, T ;
Proulx, P ;
Munz, RJ .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2000, 20 (04) :521-553
[2]   Investigating near-anode plasma layers of very high-pressure arc discharges [J].
Almeida, N. A. ;
Benilov, M. S. ;
Hechtfischer, U. ;
Naidis, G. V. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (04)
[3]   Anode-boundary-layer behaviour in a transferred, high intensity arc [J].
Amakawa, T ;
Jenista, J ;
Heberlein, J ;
Pfender, E .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (20) :2826-2834
[4]   Energy balance of a pulsed emitting sodium-vapor/xenon discharge [J].
Baksht, FG ;
Lapshin, VF .
TECHNICAL PHYSICS, 1997, 42 (09) :1004-1006
[5]   Modeling of a DC plasma torch in laminar and turbulent flow [J].
Bauchire, JM ;
Gonzalez, JJ ;
Gleizes, A .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 1997, 17 (04) :409-432
[6]   Numerical modeling of a DC non-transferred plasma torch: Movement of the arc anode attachment and resulting anode erosion [J].
Baudry, C ;
Vardelle, A ;
Mariaux, G .
HIGH TEMPERATURE MATERIAL PROCESSES, 2005, 9 (01) :1-15
[7]   Understanding and modelling plasma-electrode interaction in high-pressure arc discharges: a review [J].
Benilov, M. S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (14)
[8]  
BEZ W, 1954, Z NATURFORSCH A, V9, P72
[9]   THEORIE DES ANODENFALLS .3. AQUIPOTENTIALFLACHEN VOR DER LICHTBOGENANODE [J].
BEZ, W ;
HOCKER, KH .
ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1955, 10 (9-10) :714-717
[10]  
Boulos M. I., 1994, THERMAL PLASMAS FUND, DOI [10.1007/978-3-319-12183-3_1-2, DOI 10.1007/978-3-319-12183-3_1-2]