NiFe2O4 nanoparticles on reduced graphene oxide for supercapacitor electrodes with improved capacitance

被引:31
作者
Cai, Yong-Zhu [1 ]
Cao, Wen-Qiang [1 ]
He, Peng [1 ]
Zhang, Yan-Lan [1 ]
Cao, Mao-Sheng [1 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
NiFe2O4; nanocrystal; reduced graphene oxide; supercapacitor; electrodes material; hybrid; CATHODE MATERIAL; BINDER-FREE; ULTRA-SMALL; PERFORMANCE; CARBON; NANOCOMPOSITE; ANODE; COMPOSITES; NANOTUBES; STORAGE;
D O I
10.1088/2053-1591/ab3fff
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spinel transition metal oxides are regarded as one of the finest pseudocapacitive materials, while unexpected stability hinders their practical application. For addressing such issue, herein, we use a simple hydrothermal method to grow NiFe2O4 nanoparticles on the surface of reduced graphene oxide (rGO). The rGO nanosheets in the hybrid can be used as a conductive substrate to accelerate the movement of electrons and ions, and they can also inhibit the aggregation of NiFe2O4. As the electrochemically active materials, the NiFe2O4 nanoparticles can reduce the self-stacking of rGO as well as increase the pseudocapacitance. The rGO-NiFe2O4 hybrid delivers improved specific capacitance of 215.7 F g(-1) at 0.5 A g(-1), and exhibits superior cycle stability with no obvious capacity loss after 10000 cycles. Our work demonstrates a method for effectively improving the electrochemical performance of NiFe2O4, and accelerating the commercialization of transition metal oxides as electrode materials for supercapacitors.
引用
收藏
页数:11
相关论文
共 65 条
[1]   Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors [J].
AbdelHamid, Ayman A. ;
Yang, Xianfeng ;
Yang, Jinhua ;
Chen, Xiaojun ;
Ying, Jackie Y. .
NANO ENERGY, 2016, 26 :425-437
[2]   A Comparative Study of Electrochemical Capacitive Behavior of NiFe2O4 Synthesized by Different Routes [J].
Anwar, Shahid ;
Muthu, K. Sudalai ;
Ganesh, V. ;
Lakshminarasimhan, N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) :A976-A981
[3]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[4]   Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene) [J].
Boota, Muhammad ;
Anasori, Babak ;
Voigt, Cooper ;
Zhao, Meng-Qiang ;
Barsoum, Michel W. ;
Gogotsi, Yury .
ADVANCED MATERIALS, 2016, 28 (07) :1517-1522
[5]   Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials [J].
Cao, Mao-Sheng ;
Wang, Xi-Xi ;
Zhang, Min ;
Shu, Jin-Cheng ;
Cao, Wen-Qiang ;
Yang, Hui-Jing ;
Fang, Xiao-Yong ;
Yuan, Jie .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (25)
[6]   Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion [J].
Cao, Maosheng ;
Wang, Xixi ;
Cao, Wenqiang ;
Fang, Xiaoyong ;
Wen, Bo ;
Yuan, Jie .
SMALL, 2018, 14 (29)
[7]   2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction [J].
Cao, Shaowen ;
Shen, Baojia ;
Tong, Tong ;
Fu, Junwei ;
Yu, Jiaguo .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)
[8]   Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J].
Cao, Wenqiang ;
Wang, Wenzhong ;
Shi, Honglong ;
Wang, Jun ;
Cao, Maosheng ;
Liang, Yujie ;
Zhu, Min .
NANO RESEARCH, 2018, 11 (03) :1437-1446
[9]   Synthesis and characterization of NiCo2O4 nanospheres/nitrogen-doped graphene composites with enhanced electrochemical performance [J].
Chang, Xinwei ;
Li, Weilong ;
Liu, Yinghong ;
He, Mi ;
Zheng, Xinliang ;
Lv, Xiaozhou ;
Ren, Zhaoyu .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 784 :293-300
[10]   Synergistically Assembled Li2S/FWNTs@Reduced Graphene Oxide Nanobundle Forest for Free-Standing High-Performance Li2S Cathodes [J].
Chen, Yan ;
Lu, Songtao ;
Zhou, Jia ;
Qin, Wei ;
Wu, Xiaohong .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (25)