Sharp Davies-Gaffney-Grigor'yan Lemma on graphs

被引:18
作者
Bauer, Frank [1 ,2 ]
Hua, Bobo [3 ,4 ]
Yau, Shing-Tung [1 ]
机构
[1] Harvard Univ, Dept Math, One Oxford St, Cambridge, MA 02138 USA
[2] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[3] Fudan Univ, Sch Math Sci, LMNS, Shanghai 200433, Peoples R China
[4] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
关键词
DIRICHLET FORMS; INEQUALITY; KERNEL;
D O I
10.1007/s00208-017-1529-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove the sharp Davies-Gaffney-Grigor'yan Lemma for minimal heat kernels on graphs.
引用
收藏
页码:1429 / 1437
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 2011, Ph.D. thesis
[2]  
Bauer F, 2015, COMMUN ANAL GEOM, V23, P1031
[3]  
Bauer F, 2015, J DIFFER GEOM, V99, P359
[4]   The dual Cheeger constant and spectra of infinite graphs [J].
Bauer, Frank ;
Hua, Bobo ;
Jost, Juergen .
ADVANCES IN MATHEMATICS, 2014, 251 :147-194
[5]   Random walks on graphs with regular volume growth [J].
Coulhon, T ;
Grigoryan, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (04) :656-701
[6]   Gaussian heat kernel upper bounds via the Phragmen-Lindelof theorem [J].
Coulhon, Thierry ;
Sikora, Adam .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 :507-544
[7]   LARGE DEVIATIONS FOR HEAT KERNELS ON GRAPHS [J].
DAVIES, EB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 47 :65-72
[8]  
Delmotte T, 1999, REV MAT IBEROAM, V15, P181
[9]   Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory [J].
Frank, Rupert L. ;
Lenz, Daniel ;
Wingert, Daniel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) :4765-4808
[10]   Wave equations for graphs and the edge-based Laplacian [J].
Friedman, J ;
Tillich, JP .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (02) :229-266