Oxygen reduction reaction mechanism on P, N co-doped graphene: a density functional theory study

被引:39
|
作者
Liang, Zhao [1 ]
Liu, Chao [1 ,2 ]
Chen, Mingwei [1 ]
Qi, Xiaopeng [1 ]
Kumar, Pramod U. [1 ]
Peera, S. Gouse [3 ]
Liu, Juan [4 ]
He, Julong [2 ]
Liang, Tongxiang [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Mat Sci & Engn, Ganzhou 341000, Peoples R China
[2] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[3] Keimyung Univ, Dept Environm Sci & Engn, Daegu 42601, South Korea
[4] Hunan Univ Technol, Sch Packaging & Mat Engn, Key Lab Adv Packaging Mat & Technol Hunan Prov, Zhuzhou 412007, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH ELECTROCATALYTIC ACTIVITY; REACTION PATHWAYS; CARBON CATALYSTS; NITROGEN; BORON; NANOSHEETS; ALKALINE; PROGRESS; SILICON; DESIGN;
D O I
10.1039/c9nj04808a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, heteroatom co-doped carbon material catalysts have shown extraordinary oxygen reduction reaction (ORR) catalytic activity, but a lack of understanding of the specific mechanism of the ORR has hindered their further development. In this study, we studied the geometric structure, stability, electronic properties, catalytic sites and detailed ORR pathways of P, N co-doped graphene (PN-Gra) by density functional theory (DFT) calculations, trying to reveal the effect of N and P co-doped graphene on the catalytic activity of the ORR. Our calculations indicate that the PN-Gra structure remains stable at high temperature (1000 K) and P, N atoms with their adjacent four carbon atoms constitute the active region to adsorb O-2 more efficiently than single phosphorus or nitrogen doped catalysts. Combining energy barrier and free energy diagram analysis, the most favorable pathway is O-2* -> O* + O* -> OH* + O* -> 2OH* -> OH* + H2O -> 2H(2)O, which is thermodynamically favorable and the associated energy barrier is low, with an overpotential of 0.96 V. After comprehensive analysis and comparison, P, N co-doping does improve the catalytic ability due to the synergistic effect compared to single doping. We believe that this study provides researchers a way to understand the reaction mechanism and ways to improve the catalytic properties of carbon-based materials.
引用
收藏
页码:19308 / 19317
页数:10
相关论文
共 50 条
  • [31] Co/N co-doped graphene-like nanocarbon for highly efficient oxygen reduction electrocatalyst
    Liu, Lei
    Zhang, Jian
    Ma, Wujun
    Huang, Yunhui
    SCIENCE CHINA-MATERIALS, 2019, 62 (03) : 359 - 367
  • [32] Nitrogen and sulfur Co-doped graphene inlaid with cobalt clusters for efficient oxygen reduction reaction
    Yang, Hong Bin
    Guo, Chunxian
    Zhang, Liping
    Hu, Fang Xin
    Cai, Weizheng
    Gao, Jiajian
    Li, Chang Ming
    Liu, Bin
    MATERIALS TODAY ENERGY, 2018, 10 : 184 - 190
  • [33] Bicontinuous Nanoporous N-doped Graphene for the Oxygen Reduction Reaction
    Ito, Yoshikazu
    Qiu, H. -J.
    Fujita, Takeshi
    Tanabe, Yoichi
    Tanigaki, Katsumi
    Chen, Mingwei
    ADVANCED MATERIALS, 2014, 26 (24) : 4145 - 4150
  • [34] One-Step Synthesis of B/N Co-doped Graphene as Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Synergistic Effect of Impurities
    Mazanek, Vlastimil
    Matejkova, Stanislava
    Sedmidubsky, David
    Pumera, Martin
    Sofer, Zdenek
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (04) : 928 - 936
  • [35] Fe-N Co-doped Porous Carbon Derived from Ionic Liquids as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
    Liu, Yong
    Li, Shenshen
    Li, Xiying
    Mao, Liqun
    Liu, Fujian
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (46) : 15638 - 15646
  • [36] Biomass N/P co-doped porous carbon plates for electrocatalytic oxygen reduction
    Ma, Hongwei
    Guo, Daying
    Wu, Lianhui
    Chen, Xi'an
    MICRO & NANO LETTERS, 2024, 19 (04)
  • [37] Agaricus bisporus residue-derived Fe/N co-doped carbon materials as an efficient electrocatalyst for oxygen reduction reaction
    Chen, Guanyi
    Li, Kai
    Wu, Zhaoting
    Lin, Fawei
    Shen, Chenbo
    Yan, Beibei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (70) : 34737 - 34748
  • [38] Fabricating Sulfur/Oxygen Co-Doped Crumpled Graphene for High-Performance Oxygen Reduction Reaction Electrocatalysis
    Guo, Mei
    Qiu, Chaochao
    Li, Yu
    Jin, Xiuyan
    Zhang, Guoxin
    Sun, Xiaoming
    CHEMELECTROCHEM, 2018, 5 (02): : 242 - 246
  • [39] The supporting of Co2(OH)PO4 onto N, P Co-Doped graphene via an in-situ hydrothermal assembly synthesis for efficient oxygen reduction reaction
    Ma, Xiu-Xiu
    He, Xing-Quan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (03) : 1415 - 1423
  • [40] N, S co-doped carbon film wrapped Co nanoparticles for boosting oxygen reduction reaction
    Huang, Kexin
    Hui, Yanxing
    Yang, Zhongyun
    Waqas, Muhammad
    Fan, Fangfang
    Wang, Limin
    Liu, Xiaotian
    Huang, Qiulan
    Huang, Dujuan
    Chen, Du-Hong
    Fan, Youjun
    Chen, Wei
    MOLECULAR CATALYSIS, 2023, 541