Oxygen reduction reaction mechanism on P, N co-doped graphene: a density functional theory study

被引:39
|
作者
Liang, Zhao [1 ]
Liu, Chao [1 ,2 ]
Chen, Mingwei [1 ]
Qi, Xiaopeng [1 ]
Kumar, Pramod U. [1 ]
Peera, S. Gouse [3 ]
Liu, Juan [4 ]
He, Julong [2 ]
Liang, Tongxiang [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Mat Sci & Engn, Ganzhou 341000, Peoples R China
[2] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[3] Keimyung Univ, Dept Environm Sci & Engn, Daegu 42601, South Korea
[4] Hunan Univ Technol, Sch Packaging & Mat Engn, Key Lab Adv Packaging Mat & Technol Hunan Prov, Zhuzhou 412007, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH ELECTROCATALYTIC ACTIVITY; REACTION PATHWAYS; CARBON CATALYSTS; NITROGEN; BORON; NANOSHEETS; ALKALINE; PROGRESS; SILICON; DESIGN;
D O I
10.1039/c9nj04808a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, heteroatom co-doped carbon material catalysts have shown extraordinary oxygen reduction reaction (ORR) catalytic activity, but a lack of understanding of the specific mechanism of the ORR has hindered their further development. In this study, we studied the geometric structure, stability, electronic properties, catalytic sites and detailed ORR pathways of P, N co-doped graphene (PN-Gra) by density functional theory (DFT) calculations, trying to reveal the effect of N and P co-doped graphene on the catalytic activity of the ORR. Our calculations indicate that the PN-Gra structure remains stable at high temperature (1000 K) and P, N atoms with their adjacent four carbon atoms constitute the active region to adsorb O-2 more efficiently than single phosphorus or nitrogen doped catalysts. Combining energy barrier and free energy diagram analysis, the most favorable pathway is O-2* -> O* + O* -> OH* + O* -> 2OH* -> OH* + H2O -> 2H(2)O, which is thermodynamically favorable and the associated energy barrier is low, with an overpotential of 0.96 V. After comprehensive analysis and comparison, P, N co-doping does improve the catalytic ability due to the synergistic effect compared to single doping. We believe that this study provides researchers a way to understand the reaction mechanism and ways to improve the catalytic properties of carbon-based materials.
引用
收藏
页码:19308 / 19317
页数:10
相关论文
共 50 条
  • [21] Single-atom Fe and N co-doped graphene for lithium-sulfur batteries: a density functional theory study
    Zeng, Qing-Wen
    Hu, Ri-Ming
    Chen, Zhi-Bin
    Shang, Jia-Xiang
    MATERIALS RESEARCH EXPRESS, 2019, 6 (09):
  • [22] Accelerating the Oxygen Reduction Reaction and Oxygen Evolution Reaction Activities of N and P Co-Doped Porous Activated Carbon for Li-O2 Batteries
    Jo, Hyun-Gi
    Ahn, Hyo-Jin
    CATALYSTS, 2020, 10 (11) : 1 - 13
  • [23] Intumescent flame retardant-derived P,N co-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
    Wang, Yinling
    Zhang, Xuemei
    Li, Anna
    Li, Maoguo
    CHEMICAL COMMUNICATIONS, 2015, 51 (79) : 14801 - 14804
  • [24] B, N Co-Doped Three-Dimensional Carbon Aerogels with Excellent Electrochemical Performance for the Oxygen Reduction Reaction
    Yu, Jie
    Wang, Congliang
    Yuan, Wenjing
    Shen, Yuhua
    Xie, Anjian
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (11) : 2877 - 2883
  • [25] Highly active Fe, N co-doped graphene nanoribbon/carbon nanotube composite catalyst for oxygen reduction reaction
    Chen, Chi
    Zhang, Xue
    Zhou, Zhi-You
    Yang, Xiao-Dong
    Zhang, Xin-Sheng
    Sun, Shi-Gang
    ELECTROCHIMICA ACTA, 2016, 222 : 1922 - 1930
  • [26] Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction
    Zhang, Mingli
    Song, Yanliang
    Tao, Hengcong
    Yan, Chao
    Masa, Justus
    Liu, Yongchao
    Shi, Xiaoyou
    Liu, Shizhen
    Zhang, Xu
    Sun, Zhenyu
    SUSTAINABLE ENERGY & FUELS, 2018, 2 (08): : 1820 - 1827
  • [27] B, N Co-Doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction
    Zeng, Kai
    Su, Jianmin
    Cao, Xuecheng
    Zheng, Xiangjun
    Li, Xiaowei
    Tian, Jing-Hua
    Jin, Chao
    Yang, Ruizhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 824 (824)
  • [28] An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction
    Zhou, Ruifeng
    Qiao, Shi Zhang
    CHEMICAL COMMUNICATIONS, 2015, 51 (35) : 7516 - 7519
  • [29] Catalytic Activity for Oxygen Reduction Reaction on CoN2-Graphene: A Density Functional Theory Study
    Zhang, Jing
    Liu, Lijuan
    Liu, Wen
    Zhang, Mingang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (03) : F160 - F165
  • [30] Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction
    Zhang, Huanhuan
    Liu, Xiangqian
    He, Guangli
    Zhang, Xiaoxing
    Bao, Shujuan
    Hu, Weihua
    JOURNAL OF POWER SOURCES, 2015, 279 : 252 - 258